Answer:
Angular acceleration will be 
Explanation:
We have given that mass m = 0.18 kg
Radius r = 0.32 m
Initial angular velocity 
And final angular velocity 
Time is given as t = 8 sec
From equation of motion
We know that 


So angular acceleration will be 
A textbook would hit the ground first
Factors:
-Textbook weighs most
-Pillow is flat and fluffy not very aerodynamic) also is very light
-Paper airplane will glide to the ground do to its wings and will hit the ground last
Answer:
The speed stays constant after the force stops pushing.
Explanation:
Speed always stays constant when the force stops pushing it.
Hey there!
<span>
An object's velocity can be described by its speed and acceleration.
This statement is true
Hope this helps
Have a great day (:
</span>
Answer:
The change in current at
is 
Explanation:
From the question we are told that
The resistance is 
The current is 
The change in voltage with respect to time is 
The change in resistance with time is 
According to ohm's law

differentiating with respect to time using chain rule

substituting value at R = 456

