The equator has no continental borders.
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
<span>The correct option is C. Gravity, and the complete sentence is: "The force of gravity is the force at which the Earth attracts another object towards itself". In fact, the force of gravity between two objects is given by
</span>

<span>
where G is the gravitational constant, m1 and m2 the masses of the two objects, r their separation. If we take the Earth as one of the two objects, then m1 represents the Earth's mass, m2 the mass of the object and r the distance between the center of Earth and the object, and F is the gravitational force at which the Earth attracts the object.</span>
<h3>
Answer:</h3>
117.6 Joules
<h3>
Explanation:</h3>
<u>We are given;</u>
- Force of the dog is 24 N
- Distance upward is 4.9 m
We are required to calculate the work done
- Work done is the product of force and distance
- That is; Work done = Force × distance
- It is measured in Joules.
In this case;
Force applied is equivalent to the weight of the dog.
Work done = 24 N × 4.9 m
= 117.6 Joules
Hence, the work done in lifting the dog is 117.6 Joules
Answer:
(c) time required to travel = 8 sec
Explanation:
We have given the final position = -10 m on x axis
And the initial position =10 m
So total distance = 10-(-10)=20 m
The speed is given as 2.5 m/sec
We have tof ind the time required by the person to travel
Time is given by 
So the option (c) is correct option