1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
weqwewe [10]
3 years ago
8

What is the shape of the orbit of satellites

Physics
2 answers:
natka813 [3]3 years ago
8 0
Every closed orbit is an ellipse.

If the big body just bends the small body's path but doesn't capture it, then the small body's path is a hyperbola.
dem82 [27]3 years ago
4 0

Answer:

The shape will be elliptical hopefully this helps!

You might be interested in
Why is it expensive to bring electricity into urban areas?
motikmotik
Because of the pole and the generator you would have to biuld
8 0
3 years ago
Read 2 more answers
Two satellites are in circular orbits around a planet that has radius 9.00x10^6 m. One satellite has mass 53.0 kg , orbital radi
Andreas93 [3]

Answer:

The orbital speed of this second satellite is 5195.16 m/s.

Explanation:

Given that,

Orbital radius of first satellite r_{1}= 8.20\times10^{7}

Orbital radius of second satellite r_{2}=7.00\times10^{7}\ m

Mass of first satellite m_{1}=53.0\ kg

Mass of second satellite m_{2}=54.0\ kg

Orbital speed of first satellite = 4800 m/s

We need to calculate the orbital speed of this second satellite

Using formula of orbital speed

v=\sqrt{\dfrac{GM}{r}}

From this relation,

v_{1}\propto\dfrac{1}{\sqrt{r}}

Now, \dfrac{v_{1}}{v_{2}}=\sqrt{\dfrac{r_{2}}{r_{1}}}

v_{2}=v_{1}\times\sqrt{\dfrac{r_{1}}{r_{2}}}

Put the value into the formula

v_{2}=4800\times\sqrt{\dfrac{ 8.20\times10^{7}}{7.00\times10^{7}}}

v_{2}=5195.16\ m/s

Hence, The orbital speed of this second satellite is 5195.16 m/s.

4 0
3 years ago
If you act without reason or sound judgement, people will describe you as __________.
EastWind [94]

Answer:

irrational

Explanation:

8 0
2 years ago
Practical steam engines utilize 450ºC steam, which is later exhausted at 270ºC.
Naily [24]

(a) 0.249 (24.9 %)

The maximum efficiency of a heat engine is given by

\eta = 1-\frac{T_C}{T_H}

where

Tc is the low-temperature reservoir

Th is the high-temperature reservoir

For the engine in this problem,

T_C = 270^{\circ}C+273=543 K

T_H = 450^{\circ}C+273=723 K

Therefore the maximum efficiency is

\eta = 1-\frac{T_C}{T_H}=1-\frac{543}{723}=0.249

(b-c) 0.221 (22.1 %)

The second steam engine operates using the exhaust of the first. So we have:

T_H = 270^{\circ}C+273=543 K is the high-temperature reservoir

T_C = 150^{\circ}C+273=423 K is the low-temperature reservoir

If we apply again the formula of the efficiency

\eta = 1-\frac{T_C}{T_H}

The maximum efficiency of the second engine is

\eta = 1-\frac{T_C}{T_H}=1-\frac{423}{543}=0.221

8 0
3 years ago
Question:<br> the distance of the car can move by velocity 15 m/s for time 5s is :<br> Physics
tangare [24]

Answer:

c) 2.05

Explanation:

7 0
2 years ago
Other questions:
  • Need help please!!!!
    6·2 answers
  • The unit of entropy ?
    15·2 answers
  • How does Photosynthesis use solar energy?
    6·1 answer
  • Approximately how much electrical energy does a 5-W light bulb convert to radiant or thermal energy in one hour
    15·1 answer
  • How does a wildfire impact a population of oak trees?
    10·2 answers
  • The angular velocity of a 755-g wheel 15.0 cm in diameter is given by the equation ω(t) = (2.00 rad/s2)t + (1.00 rad/s4)t 3. (a)
    7·1 answer
  • a 2.0-mole sample of an ideal gas is gently heated at constant temperature 330 k. it expands from initial volume 19 l to final v
    15·1 answer
  • 9.
    13·1 answer
  • NEED HELP!!! ANSWER THESE 4 QUESTIONS FOR 20 POINTS!!!! PLEASE ANSWER!! I WILL GIVE YOU BRAINEST
    14·1 answer
  • During the course of a concert, the temperature of a pipe organ gradually increases. As a result, the frequency of the sound fro
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!