Hi there!
We can use the equation for the charge of a charging capacitor:

Using Capacitor equations:

Therefore, Cε equals the steady-state charge of the capacitor (the function approaches this value as t ⇒ ∞.
We can plug in the givens and solve.


Answer:
The correct answer is option 'c': Smaller stone rebounds while as larger stone remains stationary.
Explanation:
Let the velocity and the mass of the smaller stone be 'm' and 'v' respectively
and the mass of big rock be 'M'
Initial momentum of the system equals

Now let after the collision the small stone move with a velocity v' and the big roch move with a velocity V'
Thus the final momentum of the system is

Equating initial and the final momenta we get

Now since the surface is frictionless thus the energy is also conserved thus

Similarly the final energy becomes
\
Equating initial and final energies we get

Solving i and ii we get

Using this in equation i we get
Thus putting v = -v' in equation i we get V' = 0
This implies Smaller stone rebounds while as larger stone remains stationary.
Answer : The correct option is, (d) 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of copper = 
= specific heat of water = 
= mass of copper = 120 g
= mass of water = 300 g
= final temperature of mixture = 
= initial temperature of copper = ?
= initial temperature of water =
Now put all the given values in the above formula, we get:


Therefore, the temperature of the kiln was, 
It would depend on the amount it would be still or crushed<span />
Frequency refers to the number of wavelengths that pass a fixed point in a minute. true or false
Answer:True