Answer:
The chemical is the same but the concentration is different.
The chemical is more dangerous in its highly concentrated form.
Although the chemicals are the same, they require different handling procedures. Therefore specific information should be available for each.
Explanation:
Answer:
298rad/s and 116.96 ohms
Explanation:
Given an L-R-C series circuit where
L = 0.450 H,
C=2.50×10^−5F, and resistance R= 0
In this situation we have a simple LC circuit with angular frequency
Wo = 1√LC
= 1/√(0.450)(2.50×10^-5)
= 1/√0.00001125
= 1/0.003354
= 298rad/s
B) Now we need to find the value of R such that it gives a 10% decrease in angular frequency.
Wi/W° = (100-10)/100
Wi/W° = 90/100
Wi/W° = 0.90 ............... 1
Angular frequency of oscillation
The complete aspect of the solution is attached, please check.
Answer: It is not likely.
Explanation:
When the bus is moving forward, all the objects inside of it also are moving forward.
Now, as the objects inside the buss are not fixed to the bus, if the bus suddenly stops the objects inside of it will keep moving forward, because of the conservation of the momentum, defined as the quantity of motion (Similar to when you are in a car and it suddenly stops, you can feel the forward impulse).
Then is not likely that, in a case where the bus stops suddenly, an object inside the bus flies backward in opposite direction to the previous movement of the bus.
The time required for a moon to orbit around the earth is about 27-28 days
In order for lunar eclipse to occur the line that should be formed is:
Sun-Earth-Moon
because earth is making shade on moon
in order for solar eclipse to occur the line is now:
Sun-Moon-Earth
because moon is making a shade on earth (blocking sun = solar eclipse)
Therefore moon needs to make half of its orbit to go from behind the earth to in front of the earth.
28/2 = 14
Answer is 14
The question is incomplete. I can help you by adding the information missing. They want you to calculate a) the radius of the cyclotron orbit for an electron with speed 1.0 * 10^6 m/s^2 and b) the radius of a cyclotron orbit for a proton with speed 5.0 * 10^4 m/s.
The two tasks involve combining the equations of the magnectic force and the centripetal force in a circular motion.
When you do that, you will obtain an expression to find the radius of the circular motion, which is the radius of the cyclotron that impulses the particles.
a)
Magentic force, F = q*v*B
q is the charge of the electron = 1.6 * 10^ -19 C
v is the speed = 1.0 * 10 ^ 6 m/s
B is the magentic field = 5.0 * 10 ^-5 T
Centripetal force, F = m*Ac = m * v^2 / R
where,
Ac = centripetal acceleration
m = mass of the electron = 9.11 * 10 ^-31 kg
R = the radius of the orbit
Now equal the two forces: q*v*B = m * v^2 / R => R = m*v / (q*B)
=> R = (9.11 * 10^31 kg) (1.0*10^6m/s) / [ (1.6 * 10^-19C)* (5.0 * 10^-5T) ]
=> R = 0.114 m
b) The equations are the same, just now use the speed, charge and mass of the proton instead of those of the electron.
R = m*v / (qB) = (1.66*10^-27 kg)(5.0*10^4 m/s) / [(1.6*10^-19C)(5*10^-5T)]
=> R = 10.4 m