At the end of one full time period, the ant has returned to where it was at the beginning of the time period. Its displacement is <em>zero</em>.
Change in position (triangleV) divided by change in time (triangleT)
Hello!!
Here we have a simple matter of conservation of energy. ME=PE+KE.
At point A we have PE=mgh and KE=1/2mv^2. At point A all we have is PE since the coaster isn’t rolling yet. But by conservation of energy, we know that it will have enough energy to roll down and get to and equal height on another hill. Providing we are neglecting friction and drag and resistance forces which we are in this case. So we can conclude that the KE will be greater at Point B since ME=PE+KE and for ME to remain the same and we know the PE is less on lower hill, so we can conclude that KE on lower hill is greater to keep ME the same and have conservation of energy.
Hope this helps you understand the concept!! Any questions please just ask!! Thank you so much!!
Answer:
Follows are the solution to the given question:
Explanation:
For point a:

For Point b:


For Point C:
For point D:

Answer:
a)
& 
b) 
c) 
Explanation:
Given:
mass of the book, 
combined mass of the student and the skateboard, 
initial velocity of the book, 
angle of projection of the book from the horizontal, 
a)
velocity of the student before throwing the book:
Since the student is initially at rest and no net force acts on the student so it remains in rest according to the Newton's first law of motion.

where:
initial velocity of the student
velocity of the student after throwing the book:
Since the student applies a force on the book while throwing it and the student standing on the skate will an elastic collision like situation on throwing the book.

where:
final velcotiy of the student after throwing the book
b)



c)
Since there is no movement of the student in the vertical direction, so the total momentum transfer to the earth will be equal to the momentum of the book in vertical direction.


