We are asked to provide an equation for the transformation of 2-phenylethanoic acid to 2-phenylethanol. This type of a reaction is converting a carboxylic acid to an alcohol, which is classified as a reduction reaction since we are decreasing the number of bonds to oxygen in the molecule. In order to reduce a carbonyl to an alcohol, we need a source of hydride, H⁻. Reducing the carboxylic acid once will convert it to the aldehyde. However, we need to reduce the functional group all the way down to an alcohol, which is another reduction step after aldehyde formation. Therefore, the hydride source of choice is lithium aluminum hydride, LiAlH₄.
A reaction scheme is provided to show the reaction of the reduction of carboxylic acid to alcohol. The first step is addition of lithium aluminum hydride which does the reduction, and the second step is a work-up of acid which protonates the alcohol to get the final product.
A lot of the fundamental ideas of thermodynamics were established with the help of the kinetic theory of gases, a straightforward yet historically significant classical model of the thermodynamic behaviour of gases. According to the model, a gas is made up of numerous identical submicroscopic particles (atoms or molecules) that are all moving rapidly and randomly. It is considered that they are substantially smaller in size than the particle spacing on average. Random elastic collisions between the particles and with the container's walls occur between the particles. The simplest form of the model only takes into account the interactions within the ideal gas.