Answer : The final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Explanation :
As we know that:

At constant volume and temperature of gas, the pressure will be directly proportional to the number of moles of gas.
The relation between pressure and number of moles of gas will be:

where,
= initial pressure of gas = 24.5 atm
= final pressure of gas = 5.30 atm
= initial number of moles of gas = 1.40 moles
= final number of moles of gas = ?
Now put all the given values in the above expression, we get:


Therefore, the final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Answer:
Explanation:
Each coil increases it by a multiple of 100.
=> 50 | 3 | <u><em>15,000</em></u>
=> 100 | 3 | <u><em>30,000</em></u>
=> 150 | 3 | <u><em>45,000</em></u>
Answer;
= 64561.95 g/mole
Explanation;
mass of Fe in 100g = .346g
= .346 / 55.8452 moles
= 0.0061957 moles
These represent 4 moles of Fe in the molecule so moles of hemaglobin
= 0.0061957/4
= 0.0015489 moles
these are in 100 g so mass of 1 mole = 100 / 0.0015489
= 64561.95 g / mole
molar mass of hemoglobin = 64561.95 g/mole
Answer:
As an example I can say sodium (Na) and chlorine (Cl).
Explanation:
An ionic bond occurs when a metal element reacts with a nonmetal element. Therefore in the answer given above the Na is metal and Cl is nonmetal and they form a molecule through ionic bonding.
Answer:
A
Explanation:
nitrogen has the similar properties because carbon is the opposite of oxygen