It's carbon. All organic compounds contain carbon
An atom of strontium-90 contains how many electrons, protons, and neutrons?
38e⁻, 38 protons, and 52 neutrons
Answer:
1. The ground state describes the lowest possible energy that an atom can have. An electron is normally in its ground state, the lowest energy state available.
2. In a metal, atoms readily lose electrons to form positive ions (cations). These ions are surrounded by delocalized electrons, which are responsible for conductivity. The solid produced is held together by electrostatic interactions between the ions and the electron cloud. These interactions are called metallic bonds. The metallic bonding model explains the physical properties of metals. Metals conduct electricity and heat very well because of their free-flowing electrons. As electrons enter one end of a piece of metal, an equal number of electrons flow outward from the other end.
3. Physical properties are affected by the strength of intermolecular forces. Melting, boiling, and freezing points increase as intermolecular forces increase. Vapor pressure decreases as intermolecular forces increase. The physical state and properties of a particular compound depend in large part on the type of chemical bonding it displays. This is because the energy required to disrupt the intermolecular forces between molecules is far less than the energy required to break the ionic bonds in a crystalline ionic compound.
Explanation:
This is from 38 minutes ago. Sorry for late reply. I really hope this helps. :)
First, we need to find the atomic mass of

.
According to the periodic table:
The atomic mass of Carbon = C = 12.01
The atomic mass of Hydrogen = H = 1.008
The atomic mass of Oxygen = O = 16
As there are 6 Carbons, 12 Hydrogens and 6 Oxygens, therefore:
The
molar mass of

= 6 * 12.01 + 12 * 1.008 + 6 * 16
The
molar mass of

= 180.156
grams/moleNow that we have the molar mass of

, we can find the grams of glucose by using:
mass(of glucose in grams) = moles(of glucose given in moles) * molar mass(in grams/mole)
Therefore,
mass(of glucose in grams) = 2.47 * 180.156
mass(of glucose in grams = 444.99 grams
Ans: Mass of glucose in grams in 2.47 moles =
444.99 grams
-i
Answer:
16 °C
Explanation:
Step 1: Given data
- Provided heat (Q): 811.68 J
- Mass of the metal (m): 95 g
- Specific heat capacity of the metal (c): 0.534 J/g.°C
Step 2: Calculate the temperature change (ΔT) experienced by the metal
We will use the following expression.
Q = c × m × ΔT
ΔT = Q/c × m
ΔT = 811.68 J/(0.534 J/g.°C) × 95 g = 16 °C