The answer to your quesiton is,
A) Venus has phases.
-Mabel <3
<span>Cells with similar preferences are arranged closer together in the auditory cortex. </span>That statement presented is True. Auditory cortex is in the temporal lobe. It processes auditory information in human and as well as other invertebrates. The neurons inside the auditory cortex are organized depends on the frequency of the sound.
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
Answer:
Manganese oxide prevents polarisation in dry cells. - Polarization is a defect that occurs in simple electric cells due to the accumulation of hydrogen gas around the positive electrode. ... - MnO2 reacts with H2 and forms water as byproduct, so depolarization doesn't occur.
Answer:
-320 μJ.
Explanation:
Consider a point with an electrical charge of
. Assume that
is the electrical potential at the position of that charge. The electrical potential of that point charge will be equal to:
.
Keep in mind that since both
and
might not be positive, the size of the electrical potential energy might not be positive, either.
For this point charge,
; (that's -8.0 microjoules, which equals to
)
.
Hence its electrical potential energy:
.
Why is this value negative? The electrical potential energy of a charge is equal to the work needed to bring that charge from infinitely far away all the way to its current position. Also, negative charges are attracted towards regions of high electrical potential. Bringing this
negative charge to the origin will not require any external work. Instead, this process will release 320 μJ of energy. As a result, the electrical potential energy is a negative value.