Answer:
Explanation:
This is case of interference in thin films
for constructive interference in thin film the condition is
2μ t = (2n+1)λ/2 ; μ is refractive index of oil , t is thickness of oil , λ is wave length of light .
2 x 1.28 x t = λ/2 , if n = 0
2 x 1.28 x t = 605 /2
t = 118.16 nm .
the minimum non-zero thickness of the oil film required = 118.16 nm.
Answer:
The mass percentage of calcium nitrate is 31.23%.
Explanation:
Let the the mass of calcium nitrate be x and mass of potassium chloride be y.
Total mass of mixture = 19.12 g
x + y = 19.12 g..(1)
Mass of solvent = 149 g = 0.149 kg
Freezing point of the solution,
= -5.77 °C
Molal freezing constant of water = 1.86 °C/m =1.86 °C/(mol/kg)
The van't Hoff factor contribution by calcium nitrate is 3 and by potassium chloride is 2.So:
i = 3
i' = 2
Freezing point of water = T = 0°C




On solving we get:
....(2)
Solving equation (1)(2) for x and y:
x =5.973 g
y = 13.147 g
Mass percent of
in the mixture:

The mass percentage of calcium nitrate is 31.23%.
The acceleration of one of those bugs is equal to 305mi/s.
<h3>Acceleration calculation</h3>
To calculate the insect's acceleration, the action and reaction force of the impact must be considered.
As the insect will hit the helmet, the force it hits is the same force it receives, so we can make the following expression:


<em>Speed has been converted to miles per second</em>

So, the acceleration of one of those bugs is equal to 305mi/s.
Learn more about acceleration calculation: brainly.com/question/390784
Answer:
I = 1.06886 N s
Explanation:
The expression for momentum is
I = F t = Δp
therefore the momentum is a vector quantity, for which we define a reference system parallel to the floor
Let's find the components of the initial velocity
sin 28.2 = v_y / v
cos 28.2= vₓ / v
v_y = v sin 282
vₓ = v cos 28.2
v_y = 42.8 sin 28.2 = 20.225 m / s
vₓ = 42.8 cos 28.2 = 37.72 m / s
since the ball is heading to the ground, the vertical velocity is negative and the horizontal velocity is positive, it can also be calculated by making
θ = -28.2
v_y = -20.55 m / s
v_x = 37.72 m / s
X axis
Iₓ = Δpₓ = 
since the ball moves in the x-axis without changing the velocity, the change in moment must be zero
Δpₓ = m
- m v₀ₓ = 0
v_{fx} = v₀ₓ
therefore
Iₓ = 0
Y axis
I_y = Δp_y = p_{fy} -p_{oy}
when the ball reaches the floor its vertical speed is downwards and when it leaves the floor its speed has the same modulus but the direction is upwards
v_{fy} = - v_{oy}
Δp_y = 2 m v_{oy}
Δp_y = 2 0.0260 (20.55)
= 1.0686 N s
the total impulse is
I = Iₓ i ^ + I_y j ^
I = 1.06886 j^ N s
Answer:
Work = 165670.4 J = 165.67 KJ
Explanation:
First, we will find the deceleration of the car, using the 3rd equation of motion:

where,
a = deceleration = ?
s = skid distance = 40 m
vf = final speed = 0 m/s
vi = initial speed = 17.2 m/s
Therefore,

the negative sign indicates deceleration here.
Now, we will calculate the braking force applied by the brakes on the car:

the negative sign indicates braking force.
Now, we will calculate the work done using the magnitude of this force:

<u>Work = 165670.4 J = 165.67 KJ</u>