Answer:
The scalar product of a and b is: a · b = |a||b| cosθ
Answer: x ≈ 36.3 cm
Explanation:
Conservation of momentum during the collision
0.0340(120) + 1.24(0) = (0.0340 + 1.24) v
v = 3.2025 m/s
The kinetic energy of the block/bullet mass will convert to spring potential
½kx² = ½mv²
x = √(mv²/k)
x = √(1.274(3.2025²) / 99.0)
x = 0.363293... ≈ 36.3 cm
Answer:
Most of the oxygen in the atmosphere is in the form of O2, which means it is made up of molecules containing two oxygen atoms. Ozone, however is O3, which means it is made up of molecules containing three oxygen atoms. O2 is what we breath, and what plants release from photosynthesis. Ozone occurs naturally high in the stratosphere, where it absorbs ultraviolet light, protecting us here on the surface from skin cancer. Ozone can also occur closer to the surface of the earth as a pollutant. It is formed from reactions with O2 and chemicals emitted from factories and cars. It comes in the form of smog.
So in general:
Oxygen (O2): Essential to human life
Ozone (O3) in the stratosphere: essential to protecting life on earth
Ozone (O3) on the surface of the earth: toxic to human life, caused by pollution
Increasing the temperature causes the particles in the reaction to become kinetically excited, hitting one another in increasing frequency. Increased collision among means faster rate or reaction.
Answer:
We can also prove the conservation of mechanical energy of a freely falling body by the work-energy theorem, which states that change in kinetic energy of a body is equal to work done on it. i.e. W=ΔK. And ΔE=ΔK+ΔU. Hence the mechanical energy of the body is conserved
Explanation: