A) The kinetic energy of an object is given by:

where m is the mass of the object, and v its speed. For the lion in our problem, m=45 kg and v=14.2 m/s, so its kinetic energy is

b) the increase in gravitational potential energy of the lion is given by:

where g is the gravitational acceleration, and

is the increase in altitude of the lion. In this problem,

, so the increase in gravitational potential energy is

c) When the fox reaches the top of the tree, its gravitational potential energy is

As it jumps, its kinetic energy is

So the total mechanical energy of the fox as it jumps is
Answer:

Explanation:
For light passing through a single slit, the position of the nth-minimum from the central bright fringe in the diffraction pattern is given by

where
is the wavelength
D is the distance of the screen from the slit
d is the width of the slit
In this problem, we have
is the wavelength of the red light
D = 14 m is the distance of the screen from the doorway
d = 1.0 m is the width of the doorway
Substituting n=1 into the equation, we find the distance between the central bright fringe and the first-order dark fringe (the first minimum):

Answer: When you speak into the can, your voice creates air vibrations that travel into the can, vibrate the bottom of the can, which in turn vibrates the string all the way over to the other can, in turn vibrating the other can's bottom, then the air again.
Explanation:
Answer:
carbon dioxide (what you are blowing up the balloon with) is a heavy gas. so when you fill the Balloon with it, the balloon will not float. helium is a light gas and floats. gravity takes another. part in this
Answer: Zero.
Explanation:
By the first Newton's law, we know that:
every object will remain at rest or in uniform motion in a straight line unless compelled to change its state by the action of an external force.
Now, we know that the car is moving with constant speed, then there is no net force acting on the car, which means that the car is already in equilibrium.
Then if we add one force to the situation, the car will not be anymore in equilibrium.
The correct option is zero.