Using land according to its capability. protect the soil surface with some form of cover. control runoff before it develops into an erosive force
Answer: P = 36.75W
The additional power needed to account for the loss is 36.75W.
Explanation:
Given;
Mass of the runner m= 60 kg
Height of the centre of gravity h= 0.5m
Acceleration due to gravity g= 9.8m/s
The potential energy of the body for each step is;
P.E = mgh
P.E = 60 × 9.8 × 0.5
PE = 294J
Since the average loss per compression on the leg is 10%.
Energy loss = 10% (P.E)
E = 10% of 294J
E = 29.4J
To calculate the runner's additional power
given that time per stride is = 0.8s
Power P = Energy/time
P = E/t
P = 29.4J/0.8s
P = 36.75W
Answer:
The magnitude and direction of the resultant force are approximately 599.923 newtons and 36.405°.
Explanation:
First, we must calculate the resultant force (
), in newtons, by vectorial sum:
(1)
Second, we calculate the magnitude of the resultant force by Pythagorean Theorem:


Let suppose that direction of the resultant force is an standard angle. According to (1), the resultant force is set in the first quadrant:

Where
is the direction of the resultant force, in sexagesimal degrees.

The magnitude and direction of the resultant force are approximately 599.923 newtons and 36.405°.
Answer:
276.135 J
Explanation:
Given that:
mass of Fe = 30.0 g
initial temperature = 24.5°C
final temperature = 45.0°C
specific heat of Fe = 0.449 J/g°C
We can determine the thermal energy added by using the formula;
Q = mcΔT
Q = 30.0g × 0.449 J/g°C × (45.0 - 24.5)°C
Q = 276.135 J
Hey! How's it going? If you need anything, feel free to send me a friend request and message me.
Don't worry if things get wrong, they will surely get better, if not, I'm here to talk to you. :)