Answer:
work done lifting the bucket (sand and rope) to the top of the building,
W=67.46 Nm
Explanation:
in this question we have given
mass of bucket=20kg
mass of rope=
height of building= 15 meter
We have to find the work done lifting the bucket (sand and rope) to the building =work done in lifting the rope + work done in lifting the sand
work done in lifting the rope is given as,
=
..............(1)
=
=22.5 Nm
work done in lifting the sand is given as,
.................(2)
Here,
F=mx+c
here,
c=20-18
c=2
m=
m=.133
Therefore,

Put value of F in equation 2


Therefore,
work done lifting the bucket (sand and rope) to the top of the building,
W=22.5 Nm+44.96 Nm
W=67.46 Nm
Answer:
A bicycle on the top of the hill has the highest potential energy, and when the bike goes down, it transfers to kinetic because it is moving
Explanation:
yeah
Answer:
d) 289.31 m
Explanation:
Energy provided by potential energy = mgh = m x 9.8x 200 sin10.5 = 357.18m
Energy used by friction = μmgcos 10.5 x 200 = .075 x m x 9.8 x cos 10.5 x200 = 144.54 m .
Energy used by friction on plain surface = μmg x d.( dis distance covered on plain ) =.075x m x 9.8 xd = .735 m d
To equate
357.18 m -144.54 m = .735 m d
d = 289.31 m .
D FOUR years old hope this helps
mark brainliest please
H = 280 ft, the height of the flower pot.
g = 32 ft/s²
Neglect air resistance.
Note that 1 ft/s = 15/22 mi/h
The initial vertical velocity is zero.
Let v = the velocity with which the flower pot hits the ground.
Then
v² = 2gh
= 2*(32 ft/s²)*(280 ft)
= 17920 (ft/s)²
v = 133.866 ft/s
Also,
v = (133.866 ft/s)*(15/22 (mi/h)/(ft/s)) = 91.272 mi/h
Answer: 133.9 ft/s or 91.3 mi/h