1) The heat added to system
2) 800J
3) I'm not sure but I think it would be 300J.. Not certain tho
Answer:
B. ) 0.34 m
I definitely guessed and got the right answer so :))
Answer:
16.9000000000000001 J
Explanation:
From the given information:
Let the initial kinetic energy from point A be = 1.9000000000000001 J
and the final kinetic energy from point B be = ???
The charge particle Q = 6 mC = 6 × 10⁻³ C
The change in the electric potential from point B to A;
i.e. V_B - V_A = -2.5 × 10³ V
According to the work-energy theorem:
-Q × ΔV = ΔK
Answer:
Approximately .
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction () is equal to
.
There are two half-reactions in this question. and . Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of should be positive.
In this case, is positive only if is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to .
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
- is the number moles of electrons transferred for each mole of the reaction. In this case the value of is as in the half-reactions.
- is Faraday's Constant (approximately .)
.
Answer:no it is staying the same speed
Explanation: