Answer:
ΔH= 3KJ
Explanation:
The total heat absorbed is the total energy in the process, and that is in form of entalpy.
ΔH = q + ΔHvap, where q is the heat necessary for elevate the temperature of dietil ether. Suppose the initial temperature is room temperature (25ºC=298 K), then
q= 10g x2.261 J/gK x(310 K - 298K)= 271.32 J= 0.3 kJ
Then
ΔHvap = 10g C4H10O x (1 mol C4H10O/74.12 g C4H10O) x( 15.7 KJ/ 1 mol C4H10O) = 2.12 KJ
ΔH= 2.5KJ ≈ 3KJ
The pH of water is 7
5.3 to 4.3 is more acidic. 1 pH is more acidic than 2 pH The base starts at 8.
<span>Let's </span>assume that the gas has ideal gas behavior. <span>
Then we can use ideal gas formula,
PV = nRT<span>
</span><span>Where, P is the pressure of the gas (Pa), V
is the volume of the gas (m³), n is the number
of moles of gas (mol), R is the universal gas constant ( 8.314 J mol</span></span>⁻¹ K⁻¹)
and T is temperature in Kelvin.<span>
<span>
</span>P = 60 cm Hg = 79993.4 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³
n = ?
<span>
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
T = 25 °C = 298 K
<span>
By substitution,
</span></span>79993.4 Pa<span> x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 298 K<span>
n = 4.0359 x 10</span>⁻³ mol
<span>
Hence, moles of the gas</span> = 4.0359 x 10⁻³ mol<span>
Moles = mass / molar
mass
</span>Mass of the gas = 0.529 g
<span>Molar mass of the gas</span> = mass / number of moles<span>
= </span>0.529 g / 4.0359 x 10⁻³ mol<span>
<span> = </span>131.07 g mol</span>⁻¹<span>
Hence, the molar mass of the given gas is </span>131.07 g mol⁻¹
Answer:
Copper>Steel>Aluminium
Explanation:
Hello,
Since the heat capacity accounts for the required heat to increase by 1°C, 1 kg of the metal, copper is the one that has the lower heat capacity, it means that it requires the least amount of energy to warm up (increase its temperature), this could be substantiated via the mathematical definition of heat capacity:

Solving for
:

It means that the lower the heat capacity, the higher the final temperature.
Best regards.