Answer:
14700J
Explanation:
From the question given, the following were obtained:
M = 100g
ΔT = 35° C
C = 4.2J/g °C
Q=?
The heat transferred can calculated for by using the following equation
Q = MCΔT
Q = 100 x 4.2 x 35
Q= 14700J
Answer:
The law of floatation is applied in all vessels which travel by waterways that include ships, submarines and ferry boats. It is also applied in some vessels which travel by air ways such as hot air balloon and air ship. Balloons of different colors and shapes are filled with lighter gas so that will float in air.
Explanation:
As per the Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
Hence, according to this law the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
..........(1)
..............(2)
The final reaction is as follows:
.............(3)
Therefore, adding (1) and (2) we get the final equation (3) and value of
at 298 K will be as follows.
=
+
= -314 kJ + (-80) kJ
= -394 kJ
Thus, we can conclude that
at 298 K for the given process is -394 kJ.
Answer - Inter-molecular attractions
Explanation-
As we know everything around us is made up of matter that means everything has molecules as their basic structure. The state of anything is decided by the spaces between the molecules.
The state of the objects that have strong inter-molecular attractions a solid and gradually the lesser will be in state of liquid and gas. The attraction between the molecules is overcome only when a certain amount of energy is provided from outside.
Molarity (m) is defined as the number of moles to solute (n) the volume (v) of the solution in liters is important to note that the molarity is defined as moles of solute per liter of solution not moles of solute per liter of solute.