Answer:
Van der waal's force of attraction
Explanation:
Van der waal's force of attraction
Forces of Van der Waals involve attraction and repulsion among atoms, particles, and surfaces as well as many other intermolecular forces. These vary from covalent and ionic bonding in that they are caused by similarities in surrounding particle fluctuating polarizations (a result of quantum dynamics).
Answer:
The volume that the sample of oxygen would occupy at 25 ° C if the pressure were reduced to 760.0 torr is 40.2 L
Explanation:
Boyle's law establishes the relationship between the pressure and the volume of a gas when the temperature is constant, so that the pressure of a gas in a closed container is inversely proportional to the volume of the container. That is, if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Considering an initial state 1 and a final state 2, it is true:
P1* V1= P2*V2
In this case:
- P1= 20.1 L
- V1= 1520 torr
- P2= 760 torr
- V2= ?
Replacing:
20.1 L* 1520 torr= 760 torr* V2
Solving:

V2= 40.2 L
<em><u>The volume that the sample of oxygen would occupy at 25 ° C if the pressure were reduced to 760.0 torr is 40.2 L</u></em>
<em><u></u></em>
The different types of microscopes are all necessary because not all experiments require the same level of magnification. For dissections low magnification is sufficient, so a dissecting microscope works very well, while for viewing single cells the 1000 fold magnification of a compound light microscope is more accurate.
Answer:
A base.
Explanation:
Basic solutions give OH- ions.