Answer;
K+ and NO3- ions
Explanation;
The main ions remaining are K+ and NO3- ions after pbi2 precipitation is complete.
However; There will always be tiny amounts of Pb2+ and I- ions, but most of them are in the solid precipitate.
The answer is 40.
We can solve this by finding out the number of protons, and neutrons. Atomic number of an element means the number of protons in that element. So, the atom has 30 protons if the atomic number is 30.
On the other hand, mass number is the total number of protons and neutrons, but not electrons, because they're too light comparing to the other 2. Therefore, we can simply solve the number of neutrons in the atom by subtracting the number of protons from the mass number. 70 - 30 = 40.
Therfore, the number of neutrons is 40.
When the balanced equation for this reaction is:
2Fe + 3H2O → Fe2O3 + 3H2
and according to the vapour pressure formula:
PV= nRT
when we have P is the vapor pressure of H2O= 0.121 atm
and V is the volume of H2O = 4.5 L
and T in Kelvin = 52.5 +273 = 325.5 K
R= 0.08205 atm-L/g mol-K
So we can get n H2O
So, by substitution:
n H2O = PV/RT
= (0.121*4.5)/(0.08205 * 325.5) = 0.02038 gmol
n Fe2O3 = 0.02038 * (1Fe2O3/ 3H2O) = 0.00679 gmol
Note: we get (1FeO3/3H2O) ratio from the balanced equation.
we can get the Mass of Fe2O3 from this formula:
Mass = number of moles * molecular weight
when we have a molecular weight of Fe2O3 = 159.7
= 0.00679 * 159.7 = 1.084 g
∴ 1.084 gm of Fe2O3 will produced
Answer:
D. Solutions are formed when the water’s polar molecules separate the polar molecules of an ionic or molecular compound.
Explanation:
Solutions are homogeneous mixtures formed by interaction between solutes and solvents.
Water based solutions have water as the solvents and mostly ionic and molecular compounds as their solutes.
Water is a polar solvent that is capable of dissolving many compounds by hydrating them. The molecules of water surrounds the solute and forces them to separate.