Answer:
<em>The velocity of the carts after the event is 1 m/s</em>
Explanation:
<u>Law Of Conservation Of Linear Momentum
</u>
The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is
P=mv.
If we have a system of bodies, then the total momentum is the sum of the individual momentums:

If a collision occurs and the velocities change to v', the final momentum is:

Since the total momentum is conserved, then:
P = P'
In a system of two masses, the equation simplifies to:

If both masses stick together after the collision at a common speed v', then:

The common velocity after this situation is:

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

The velocity of the carts after the event is 1 m/s
Answer:

Explanation:
*Assume the parallel disks have equal diameters.
Given the electric strength as
transferring
electrons, the disk's Area can be calculated using the formula:

#We now calculate the disks diameter:

Hence, the diameter of the disks is 
Answer:
Positions in Hockey: 6 players for each team on the ice
1 Goalie – the player in the goal who tries to stop the puck from going in the net.
1 Center – plays in between the two wings and is usually the best passer on the team
2 Wings – offensive players who plays on both sides of the center. They are usually goal scorers
2 Defensemen – main job is to play defense and help defend the goal
Passing Cues
1. Stick blade faces target
2. Puck in center of blade
3. Transfer weight rear to front as you pass
4. Use wrist movement to drive the puck
5. Follow through at target
Receiving Cues:
1. athletic position
2. catch puck with middle of blade and control
3. slow the puck when it contacts the stick by giving with it
Explanation:
The correct answer is
<span>A. decreasing the current
In fact, the magnetic field produced by a current carrying wire is given by
</span>

<span>where
</span>

is the vacuum permeability
<span>I is the current in the wire
r is the distance from the wire at which the field is calculated
We see from the formula that the intensity of the field, B, is directly proportional to the current I, so if the current decreases, the magnetic field strength B decreases as well.</span>
Answer:

Explanation:
We can use the equation for the speed

where x is the distance and t the time. In this case we know that the time spent was 2 hours and the distance was 150km. By replacing we have

I hope this useful for you
regards