Answer:
shown in the attachment
Explanation:
The detailed step by step and necessary mathematical application is as shown in the attachment.
Going to college and passing all your classes
Answer:

Explanation:
The electric field produced by a single point charge is given by:

where
k is the Coulomb's constant
q is the charge
r is the distance from the charge
In this problem, we have
E = 1.0 N/C (magnitude of the electric field)
r = 1.0 m (distance from the charge)
Solving the equation for q, we find the charge:

Answer:
light waves can be converted to electricity through <em>a solar cell</em>
Explanation:
Answer:
7.8 m/s
Explanation:
Here object is falling with a gravitational acceleration there for we can take acceleration = 10 m/ s² and its constant through out the motion there for we can use motion equation
V = U + at
V - Final velocity
U - Initial velocity
a - acceleration
t - time
V=U+at
107.8=U + 10×10
= 7.8 m/s