<span>Weight of block, Wb = mass*gravity = 50*9.8 = 490 N</span>
Since block is being pulled up by a 13-degree slope
Therefore, Force which is acting parallel to the slop:
<span> F p =490 Sin </span>
= 110.2N
Force which is acting perpendicular to the slope:
<span> Fv =490 Cos</span>
= 477.4 N
Net force can be given as follows:
<span>F n = (250 - 110.2 - 0.2*</span>477.4) N
<span>Fn=44.3N</span>
Now acceleration is given by the ratio of force to mass
<span>a = Fn/m</span>
<span>=44.3/50 = 0.89 ms^<span>-2</span></span>
The speed of a wave is dependant on four factors: wavelength, frequency, medium, and temperature.
Answer:
700 mL or 0.0007 m³
Explanation:
P₁ = Initial pressure = 2 atm
V₁ = Initial volume = 350 mL
P₂ = Final pressure = 1 atm
V₂ = Final volume
Here the temperature remains constant. So, Boyle's law can be applied here.
P₁V₁ = P₂V₂

So, volume of this sample of gas at standard atmospheric pressure would be 700 mL or 0.0007 m³
Answer:
The answer is A
Explanation:
Here's an example. A child is in school taking a test. They have made a mistake on a question, and want to erase it. The eraser is made out of a type of rubber, the rubber has friction, which means the eraser has something that's going to resist movement. Now the child has exerted enough force to get it moving, and it's moving, it won't stop unless the child stops exerting force to keep it moving. Both Newton's 1st and 3rd law explain the action of moving something on a surface with friction.