Lo experiences tidal heating primarily because lo’s elliptical orbit causes the tidal force on lo to vary as it orbits the Jupiter. Thus, lo’s elliptical orbit is essential to its tidal heating. This elliptical orbit, in turn, is an end result of the orbital resonance among lo, Europa and ganymade. This orbital resonance origin lo to have a more elliptical orbit than it would because lo intermittently passes Europa and ganymade in the same orbital position. We cannot perceive tidal forces of tidal heating in lo but rather we foresee that they must occur based on the orbital characteristic of the moons and active volcanoes on lo is the observational evidence that tidal heating is significant in lo.
Answer:
the middle
Explanation:
the left one bulb gets power from the outher bulb
the one on right has more bulbs
Answer:
a

b

Explanation:
From the question we are told that
The mass of the rock is 
The length of the small object from the rock is 
The length of the small object from the branch 
An image representing this lever set-up is shown on the first uploaded image
Here the small object acts as a fulcrum
The force exerted by the weight of the rock is mathematically evaluated as

substituting values


So at equilibrium the sum of the moment about the fulcrum is mathematically represented as

Here
is very small so
and 
Hence

=> 
substituting values


The mechanical advantage is mathematically evaluated as

substituting values


Explanation: (I think)
Plug your values into the momentum equation.
So m1= 63kg
m2 = 10 kg
V1 = 12 m/s
And then plug in your values and solve for your unknown (v2)
A) We want to find the work function of the potassium. Apply this equation:
E = 1243/λ - Φ
E = energy of photoelectron, λ = incoming light wavelength, Φ = potassium work function
Given values:
E = 2.93eV, λ = 240nm
Plug in and solve for Φ:
2.93 = 1243/240 - Φ
Φ = 2.25eV
B) We want to find the threshold wavelength, i.e. find the wavelength such that the energy E of the photoelectrons is 0eV. Plug in E = 0eV and Φ = 2.25eV and solve for the threshold wavelength λ:
E = 1243/λ - Φ
0 = 1243/λ - Φ
0 = 1243/λ - 2.25
λ = 552nm
C) We want to find the frequency associated with the threshold wavelength. Apply this equation:
c = fλ
c = speed of light in a vacuum, f = frequency, λ = wavelength
Given values:
c = 3×10⁸m/s, λ = 5.52×10⁻⁷m
Plug in and solve for f:
3×10⁸ = f(5.52×10⁻⁷)
f = 5.43×10¹⁴Hz