If you remember the formula for potential energy,
then this question is a piece-o-cake.
<em>Potential energy = (mass) x (<u>acceleration of gravity</u>) x (height) .</em>
-- The object's mass is the same everywhere.
-- You said that the height is the same both times.
-- How about the acceleration of gravity ?
Compared to gravity on Earth, it's only 16.5 percent as much on the Moon.
So naturally, from the formula, you'd expect the Potential Energy to be less
on the Moon.
Answer:
The amount of mass that needs to be converted to release that amount of energy is 
Explanation:
From Albert Einstein's Energy equation, we can understand that mass can get converted to energy, using the formula

where
= change in mass
c = speed of light = 
Making m the subject of the formula, we can find the change in mass to be

There fore, the amount of mass that needs to be converted to release that amount of energy is 1.122 X 10 ^-7 kg
Hello,
<span>A car with a mass of 2.0×10^3 kg is traveling at 15m/s. We need to find the momentum of the car. To do so, follow this formula:
p=mv
Where,
p = momentum
m = mass
v = </span>velocity
The cars mass is 2.0E3 and its velocity is 15m/s. Therefore:
p=2.0 x 10^3 *15 or 2000(15)
p=30000
Thus, the cars momentum is 30000 kg m/s
Faith xoxo