The answer is 14.22 mg / (mm^2)
- E(Bonds broken) = 1371 kJ/mol reaction
- E(Bonds formed) = 1852 kJ/mol reaction
- ΔH = -481 kJ/mol.
- The reaction is exothermic.
<h3>Explanation</h3>
2 H-H + O=O → 2 H-O-H
There are two moles of H-H bonds and one mole of O=O bonds in one mole of reactants. All of them will break in the reaction. That will absorb
- E(Bonds broken) = 2 × 436 + 499 = 1371 kJ/mol reaction.
- ΔH(Breaking bonds) = +1371 kJ/mol
Each mole of the reaction will form two moles of water molecules. Each mole of H₂O molecules have two moles O-H bonds. Two moles of the molecule will have four moles of O-H bonds. Forming all those bond will release
- E(Bonds formed) = 2 × 2 × 463 = 1852 kJ/mol reaction.
- ΔH(Forming bonds) = - 1852 kJ/mol
Heat of the reaction:
is negative. As a result, the reaction is exothermic.
Answer; If a chemical has a pH of 3, how could you change its pH value to be more basic? Adding water to a chemical will dilute the acid, thus lowering the pH value to more basic.
Answer:
5- number of electrons=11
Explanation:
in a neutral atom number of protons=number of electrons which in this case=11
According to Raoult's low:
We will use this formula: Vp(Solution) = mole fraction of solvent * Vp(solvent)
∴ mole fraction of solvent = Vp(Solu) / Vp (Solv)
when we have Vp(solu) = 25.7 torr & Vp(solv) = 31.8 torr
So by substitution:
∴ mole fraction of solvent = 25.7 / 31.8 =0.808
when we assume the moles of solute NaCl = X
and according to the mole fraction of solvent formula:
mole fraction of solvent = moles of solvent / (moles of solvent + moles of solute)
by substitute:
∴ 0.808 = 0.115 / (0.115 + X)
So X (the no.of moles of NaCl) = 0.027 m