To balance this equation, first we should consider balancing C because it only presents in one reactant and one product. Assuming the coefficient of C6H6 is 1, there are 6 C's in the reactant, so it generates 6CO2. Then consider balancing H for the same reason. If the coefficient of C6H6 is 1, there are 6 H's in the reactant, so it generates 3H2O.
Now that the coefficient of the products are determined, we can balance O. There are 6*2=12 O's in CO2 and 3*1=3 O's in H2O. So the total number of O in the products is 12+3 = 15. O2 is the only reactant that contains O, so to balance the equation, the coefficient of O2 should be 15/2.
Now the equation looks like:
C6H6 + 15/2O2 ⇒ 6CO2 + 3H2O.
Times both sides of the equation by 2 results the final answer:
2C6H6 + 15O2 ⇒ 12CO2 + 6H2O
Answer:
7.32g of HNO3 are required.
Explanation:
1st) From the balanced reaction we know that 2 moles of HNO3 react with 1 mole of Ca(OH)2 to produce 2 moles of H2O and 1 mole of Ca(NO3)2.
From this, we find that the relation between HNO3 and Ca(OH)2 is that 2 moles of HNO3 react with 1 mole of Ca(OH)2.
2nd) This is the order of the relations that we have to use in the equation to calculate the grams of nitric acid:
• starting with the 4.30 grams of Ca(OH)2.
,
• using the molar mass of Ca(OH)2 (74g/mol).
,
• relation of the 2 moles of HNO3 that react with 1 mole of Ca(OH)2 .
,
• using the molar mass of HNO3 (63.02g/mol).

So, 7.32g of HNO3 are required.
Kc' =Kc^1/3
=3√0.0061
=0.182716013