Answer:
40% of the energy release by the peanut is 3500 calories
Explanation:
One calorie is defined as the amount of energy required to increase the temperature of one gram of water for one degree Celsius (or one Kelvin)
Equation for energy gain by water is
Q = mcΔT
where, m is the mass of the object
c is the specific heat capacity
ΔT is the change in temperature
c = 1.0 cal/g?°C.
m = 50 g
ΔT = 50°C - 22°C
= 28°C
Q = (50)× (1)× (28)
= 1400calories
The peanut contain 1400calories of energy .
amount that 40% of energy is released to water ,
so,
Q = 1400 calories / 0.4
= 3500 calories
Therefore, 40% of the energy release by the peanut is 3500 calories
Answer:
The water bends due to the static electricity on the balloon.
Explanation:
The static electricity you built up by rubbing it against the balloon attracts the stream of water, bending it towards the comb or balloon like magic!
Negatively charged particles called electrons jump the wool to the balloon as they rub together, the comb now has extra electrons and is negatively charged. The water features both positive and negatively charged particles and is neutral. Positive and negative charges are attracted to each other so when you move the negatively charged balloon towards the stream, it attracts the water's positively charged particles and the stream bends!
It would be C, 6.2 x 10^23.
Avogadro's number, or, the mole, is 6.02 x 10^23. Although the grams and molar mass of an element may be different, every element must have the same amount of atoms to obey avogadro's number.
3 moles FeCl2
Explanation:
For any chemical reaction, the balanced chemical equation tells you the ratio that must always exist between the reactants.
In your case, you have
FeCl2(aq) + 2NaOH(aq) → Fe(OH)2(s) ↓ + 2 NaCl(aq)
The stoichiometric coefficients that belong to iron(II) chloride and to sodium hydroxide, respectively, tell you the mole ratio that must exist between the two reactants when this reaction takes place.
Notice that you have a 1:2 mole ratio between the two reactants, so you can say that the reaction will always consume twice as many moles of sodium hydroxide than moles of iron(II) chloride.
Now, you know that 6 moles of iron(II) chloride are added to 6 moles of sodium hydroxide.
Use the aforementioned mole ratio to determine how many moles of iron(II) chloride will react with the moles of sodium hydroxide
6 moles NaOH ⋅ 1 mole FeCl2
———————
2 moles NaOH
= 3 moles FeCl 2
This tells you that in order for all the moles of sodium hydroxide to react, you need 3 moles of iron(II) chloride. The other 3 moles will not take part in the reaction, i.e. they are in excess.
So, you can say that
3 moles of FeCl 2 → will react
3 moles of FeCl 2 → will not react
Notice that sodium hydroxide is completely consumed before all the moles of iron(II) chloride get the chance to take part in the reaction.
This tells you that sodium hydroxide acts as a limiting reagent, i.e. it limits the amount of iron(II) chloride that takes part in the reaction from 6 moles to 3 moles.