The half life of a radioactive element is the time needed to the element to decay and reach the half amount of the initial amount. Here we have a radioisotope element which decays its half from 10,000 to 5,000 in two days. Therefore, its half life is 2 days.
Answer:
0.10M HCN < 0.10 M HClO < 0.10 M HNO₂ < 0.10 M HNO₃
Explanation:
We are comparing acids with the same concentration. So what we have to do first is to determine if we have any strong acid and for the rest ( weak acids ) compare them by their Ka´s ( look for them in reference tables ) since we know the larger the Ka, the more Hydronium concentration will be in these solutions at the same concentration.
HNO₃ is a strong acid and will have the largest hydronium concentration.
HCN Ka = 6.2 x 10⁻¹⁰
HNO₂ Ka = 4.0 x 10⁻⁴
HClO Ka = 3.0 x 10⁻⁸
The ranking from smallest to largest hydronium concentration will then be:
0.10M HCN < 0.10 M HClO < 0.10 M HNO₂ < 0.10 M HNO₃
Formal charge can be calculated from the following formula
Formal charge = valency of central atom - (number of lone pair of electrons + number of covalent bonds)
a) for methylene:
Formal charge = 4 -( 2+ 2) = 0
b) For methyl free radical
Formal charge = 4- (3 +1) = 0
Answer:
The humid continental climate has hot summers, while the subarctic climate has short, cool summers.
Explanation:
I did the lesson already and got it correct lol
Explanation:
Reversible reactions that happen in a closed system eventually reach equilibrium. At equilibrium, the concentrations of reactants and products do not change. But the forward and reverse reactions have not stopped - they are still going on, and at the same rate as each other.