The force that holds protons and neutrons together is too strong to overcome.
<h3>Explanation</h3>
Consider the location of the particles in an atom.
- Electrons are found outside the nucleus.
- Protons and neutrons are found within the nucleus.
Protons carry positive charges and repel each other. The nucleus will break apart without the strong force that holds the protons and neutrons together. This force is much stronger than the attraction between the nucleus and the electrons. X-rays are energetic enough for removing electrons from an atom. However, you'll need a collider to remove protons from a stable nucleus. You could well have ionized the atom with all that energy.
Also, changing the number of protons per nucleus will convert the halogen atom to an atom of a different element. Rather than making the halogen negative, removing a proton will convert the halogen atom to the negative ion of a different element.
Decomposers. They help break apart and digest dead matter and put those nutrients back into the soil, making them available. Happy to help!
Answer:
d. 3 signals: a singlet, a doublet, and a septet
Explanation:
In this case, we can start with the structure of
. When we draw the molecule we will obtain <u>2-methoxypropane</u> (see figure 1).
In 2-methoxypropane we will have three signals. The signal for the
groups in the left, the
and the
in the right. Lets analyse each one:
-)
in the right
In this carbon, we dont have any hydrogen as neighbors. Therfore we will have <u>singlet</u> signal in this carbon.
-)
In this case, we have 6 hydrogen neighbors ( the two methyl groups in the left). So, if we follow the <u>n + 1 rule</u> (where n is the amount of hydrogen neighbors):
For this carbon we will have a <u>septet</u>.
-)
in the left
In this case we have only 1 hydrogen neighbor (the hydrogen in
). So, if we use the n+1 rule we will have:
We will have a doublet
With all this in mind the answer would be:
<u>d. 3 signals: a singlet, a doublet, and a septet
</u>
<u />
See figure 2 to further explanations
F4OP2 I’m not sure if you were looking for the molecular formula or other formula
Answer:
On the basis of this explanation, if the rate of lactate production is high enough, the cellular proton buffering capacity can be exceeded, resulting in a decrease in cellular pH. These biochemical events have been termed lactic acidosis. ... Every time ATP is broken down to ADP and Pi, a proton is released
Explanation: