Answer:
Melting of snow
Evaporation of water from desk
Explanation:
Processes that increase the entropy of the universe are those processes that have an increased disorderliness. We should note that there are three principal states of matter which are the liquid, gas and solid. The gaseous state is the most disorderly while the solid is the least disorderly.
Now. We can see that the cooling of a hot cup of coffee is a process that needs or leads to a loss in temperature which obviously decreases disorderliness of the universe.
The melting of snow however is a process that leads to an increase in the disorderliness of the universe. It entails moving from the solid state to the liquid state. It tends to move to a more disordered state indicating an increase in the entropy of the universe.
The evaporation of water from the desk is quite similar to that above. Hence since we are moving from the liquid to the gaseous state via evaporation, we can state that the entropy of the universe has increased since we have moved from a state with a lesser degree of disorderliness to a state that is more disordered I.e from liquid to gaseous state.
Frenkel defect is a defect in crystalline solids in which an atom is displaced from its lattice position to an interstitial space. This creates a vacant space at the original site and an interstitial defect at the new site within the same element. This defect does not affect the chemical properties of the compound. This defect usually occur in ionic solids with large size difference between the anion and cation.
LiCl does not exhibit Frenkel defect because the size difference between the anion and the cation of the compound is very small.
Answer:
T2 = 135.1°C
Explanation:
Given data:
Mass of water = 96 g
Initial temperature = 113°C
Final temperature = ?
Amount of energy transfer = 1.9 Kj (1.9×1000 = 1900 j)
Specific heat capacity of aluminium = 0.897 j/g.°C
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
Now we will put the values in formula.
Q = m.c. ΔT
1900 j = 96 g × 0.897 j/g.°C × T2 - 113°C
1900 j = 86.112 j/°C × T2 - 113°C
1900 j / 86.112 j/°C = T2 - 113°C
22.1°C + 113°C = T2
T2 = 135.1°C
Answer:
The answer is
<h2>14.50 cm³</h2>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass of iron = 114 g
density = 7.86 g/cm³
The volume is

We have the final answer as
<h3>14.50 cm³</h3>
Hope this helps you
Which solution is the least concentrated?
O 2 moles of solute dissolved in 4 liters of solution