Answer:
f = c / λ = wave speed c (m/s) / wavelength λ (m). The formula for time is: T (period) = 1 / f (frequency). λ = c / f = wave speed c (m/s) / frequency f (Hz). The unit hertz (Hz) was once called cps = cycles per second.
Explanation:
5x-30=2
5x=2+30 (not -28) when the -30 is brought over to the RHS, 30 should be added to 2 instead of subtracted
hence, 5x=32
x = 6.4
Answer:
,
, ![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
Explanation:
Let suppose that fluid is incompressible and diffuser works at steady state. A diffuser reduces velocity at the expense of pressure, which can be modelled by using the Principle of Mass Conservation:




The following relation are found:

The new relationship is determined by means of linear interpolation:


After some algebraic manipulation, the following for the velocity as a function of position is obtained hereafter:


![v (x) = v_{in}\cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}}-1 \right)\cdot x \right]^{-1}](https://tex.z-dn.net/?f=v%20%28x%29%20%3D%20v_%7Bin%7D%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%5Ccdot%20x%20%5Cright%5D%5E%7B-1%7D)
The acceleration can be calculated by using the following derivative:

The derivative of the velocity in terms of position is:
![\frac{dv}{dx} = -v_{in}\cdot \left(\frac{1}{L}\right) \cdot \left(\frac{v_{in}}{v_{out}}-1 \right) \cdot \left[1 + \left(\frac{1}{L}\right)\cdot \left(\frac{v_{in}}{v_{out}} -1 \right) \cdot x \right]^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdx%7D%20%3D%20-v_%7Bin%7D%5Ccdot%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%20%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D-1%20%20%5Cright%29%20%5Ccdot%20%5Cleft%5B1%20%2B%20%5Cleft%28%5Cfrac%7B1%7D%7BL%7D%5Cright%29%5Ccdot%20%5Cleft%28%5Cfrac%7Bv_%7Bin%7D%7D%7Bv_%7Bout%7D%7D%20-1%20%5Cright%29%20%5Ccdot%20x%20%5Cright%5D%5E%7B-2%7D)
The expression for acceleration is derived by replacing each variable and simplifying the resultant formula.
Answer:
c frog
Explanation:
frog have chance that can lived in the locality or in public place like river,lake,farm and other place that they can be lived and hunt foods. In the picture bear, elephant and tiger are can't lived in the locality that have many population of people. little percent of changes that they can hunts foods or lived in the public/locatlity place.
Answer:
The height of the water is 1.25 m
Explanation:
copper properties are:
Kc=385 W/mK
D=20x10^-3 m
gc=8960 kg/m^3
Cp=385 J/kg*K
R=10x10^-3 m
Water properties at 280 K
pw=1000 kg/m^3
Kw=0.582
v=0.1247x10^-6 m^2/s
The drag force is:

The bouyancy force is:

The weight is:

Laminar flow:

Reynold number:

Not flow region
For Newton flow region:






