For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.
For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.
<h3>Explanation</h3>
How long does it take for the ball to reach the goal?
Let the distance between the kicker and the goal be
meters.
Horizontal velocity of the ball will always be
until it lands if there's no air resistance.
The ball will arrive at the goal in
seconds after it leaves the kicker.
What will be the height of the ball when it reaches the goal?
Consider the equation
.
For this soccer ball:
,
,
since the player kicks the ball "from ground level."
when the ball reaches the goal.
.
Solve this quadratic equation for
,
.
meters when
meters.
or
meters when
meters.
In other words,
- For the ball to go straight into the goal, the kicker needs to be no more than 6.54 meters away from the goal.
- For the ball to arc into the goal, the kicker needs to be between 58.5 and 65.1 meters away from the goal.
Answer:
Explanation: Covalent bonding occurs when pairs of electrons are shared by atoms. Atoms will covalently bond with other atoms in order to gain more stability, which is gained by forming a full electron shell. By sharing their outermost (valence) electrons, atoms can fill up their outer electron shell and gain stability.
Answer: Examples of nonrenewable resources include crude oil, natural gas, coal, and uranium. These are all resources that are processed into products that can be used commercially. For example, the fossil fuel industry extracts crude oil from the ground and converts it to gasoline.
Answer:
earth
Explanation:
The formula for the orbital period of the moon is given by

As the time period is inversely proportional to the square root of the acceleration due to gravity of the planet.
As the value of acceleration due to gravity on Jupiter is more than the earth, so the period of moon around the earth is large as compared to the period of the moon around the Jupiter when the distance is same.
The planar simple harmonic wave travels in the positive direction of x axis with wave velocity u=2m/s, and the vibration curve of the particle at the origin in cosinusoidal form is shown in the figure.
Try to find (1) the vibration function of the particle at the origin, (2) the wave function of the planar simple harmonic wave according to the origin.