The total mechanical energy of the system at any time t is the sum of the kinetic energy of motion of the ball and the elastic potential energy stored in the spring:

where m is the mass of the ball, v its speed, k the spring constant and x the displacement of the spring with respect its rest position.
Since it is a harmonic motion, kinetic energy is continuously converted into elastic potential energy and vice-versa.
When the spring is at its maximum displacement, the elastic potential energy is maximum (because the displacement x is maximum) while the kinetic energy is zero (because the velocity of the ball is zero), so in this situation we have:

Instead, when the spring crosses its rest position, the elastic potential energy is zero (because x=0) and therefore the kinetic energy is at maximum (and so, the ball is at its maximum speed):

Since the total energy E is always conserved, the maximum elastic potential energy should be equal to the maximum kinetic energy, and so we can find the value of the maximum speed of the ball:


Answer:
mass of a object is the answer
a steep-sided valley formed by the downward displacement of a block of the earth's surface between nearly parallel faults or fault systems.
Answer: he did travel 15 meters.
Explanation:
We have the data:
Acceleration = a = 1.2 m/s^2
Time lapes = 3 seconds
Initial speed = 3.2 m/s.
Then we start writing the acceleration:
a(t) = 1.2 m/s^2
now for the velocity, we integrate over time:
v(t) = (1.2 m/s^2)*t + v0
with v0 = 3.2 m/s
v(t) = (1.2 m/s^2)*t + 3.2 m/s
For the position, we integrate again.
p(t) = (1/2)*(1.2 m/s^2)*t^2 + 3.2m/s*t + p0
Because we want to know the displacementin those 3 seconds ( p(3s) - p(0s)) we can use p0 = 0m
Then the displacement at t = 3s will be equal to p(3s).
p(3s) = (1/2)*(1.2 m/s^2)*(3s)^2 + 3.2m/s*3s = 15m