Answer:
The Sun is a natural source for visible light waves and our eyes see the reflection of this sunlight off the objects around us.
Answer: condensation.
Vaporization is the pass from liquid state to gaseous state.
Then the reverse is the transformation from gaseous state to liquid state.
That is called condensation.
When the water vaporizes the liquid transforms into vapor which goes to the atmosphere. When the water vapor of the atmosphere condensates liquid water is formed. You can see condensation when you have a glass with cold water and drops of water form in the exterior of the glass: those drops are liquid water that formed when the vapor of the air that surrounds the glass cools due to the lower temperature of the surface of the glass.
Density<span> is the </span>mass<span> of an object </span>divided<span> by its </span>volume<span>. So the answer would be Yes. Hope it helps! (:</span>
Answer:
A. 
B. 
C. 
Explanation:
The capacitance of a capacitor is its ability to store charges. For parallel-plate capacitors, this ability depends the material between the plates, the common plate area and the plate separation. The relationship is

is the capacitance,
is the common plate area,
is the plate separation and
is the permittivity of the material between the plates.
For air or free space,
is
called the permittivity of free space. In general,
where
is the relative permittivity or dielectric constant of the material between the plates. It is a factor that determines the strength of the material compared to air. In fact, for air or vacuum,
.
The energy stored in a capacitor is the average of the product of its charge and voltage.

Its charge,
, is related to its capacitance by
(this is the electrical definition of capacitance, a ratio of the charge to its voltage; the previous formula is the geometric definition). Substituting this in the formula for
,

A. Substituting for
in
,

B. When the distance is
,


C. When the distance is restored but with a dielectric material of dielectric constant,
, inserted, we have
