Explanation:
Mass of bumper cars, 
Initial speed of car A, 
Initial speed of car Z, 
Final speed of car A after the collision, 
We need to find the velocity of car Z after the collision. Let it is equal to
. Using the conservation of momentum as :




So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.
32 kg m/s would be the kinetic energy.
Answer:
one im so sry i have no idea. I have been researshing for about 30min and i cant find anything im so sry:/
Explanation:
Based on the given statement above, the correct answer would be FALSE. It is not true that range of motion is the distance an object can travel when separated from another object because range of motion or ROM is the distance--linear or angular--<span>that a movable object may normally travel while properly ATTACHED (not separated) to another. Hope this answer helps.</span>