Answer:
a) E₀ = 2.125 eV, b) # photon2 = 9.2 10¹⁵ photons / mm²
Explanation:
a) To calculate the energy of a photon we use Planck's education
E = h f
And the ratio of the speed of light
c = λ f
We replace
E = h c /λ
Let's calculate
E₀ = 6.63 10⁻³⁴ 3 10⁸/585 10⁻⁹
E₀ = 3.40 10⁻¹⁹ J
Let's reduce
E₀ = 3.4 10⁻¹⁹ J (1 eV / 1.6 10⁻¹⁹ J)
E₀ = 2.125 eV
b) Let's look for the energy in each pulse
P = E / t
E = P t
E = 20.0 0.45 10⁻³
E = 9 10⁻³ J
let's use a ratio of proportions (rule of three) if we have the energy of a photon (E₀), to have the energy of 9 10⁻³ J
# photon = 9 10⁻³ /3.40 10⁻¹⁹
# photon = 2.65 10¹⁶ photons
Let's calculate the areas
Focus area
A₁ = π r²
A₁ = π (3.4/2)²
A₁ = 9,079 mm²2
Area requested for calculation r = 1 mm
A₂ = π 1²
A₂ = 3.1459 mm²
Let's use another rule of three. If we have 2.65 106 photons in an area A1 how many photons in an area A2
# photon2 = 2.65 10¹⁶ 3.1459 / 9.079
# photon2 = 9.2 10¹⁵ photons / mm²
Answer:
203360Pa
Explanation:
Pressure= density of liquid*height*g
=1000*10*10
=100000Pa
Total pressure= water pressure + atmospheric pressure
=1000000+103360
=203360 Pascal
Answer:
18.9 m.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 0 m/s
Final velocity (v) = 70 km/h
Height (h) =?
Next, we shall convert 70 km/h to m/s. This can be obtained as follow:
3.6 km/h = 1 m/s
Therefore,
70 km/h = 70 km/h × 1 m/s / 3.6 km/h
70 km/h = 19.44 m/s
Finally, we shall determine the height. This can be obtained as follow:
Initial velocity (u) = 0 m/s
Final velocity (v) = 19.44 m/s
Acceleration due to gravity (g) = 10 m/s²
Height (h) =?
v² = u² + 2gh
19.44² = 0² + (2 × 10 × h)
377.9136 = 0 + 20h
377.9136 = 20h
Divide both side by 20
h = 377.9136 / 20
h = 18.9 m
Thus, the car will fall from a height of 18.9 m