<span>So we want to know what will happen when the fast moving car that is making loud noise that is initially approaching the person, passes the person and starts to move away. So Doppler effect is a phenomenon where when the source of a sound is approaching a person, the person hears the sound as higher than if the source was standing still with respect to the person because the wavelength is getting shorter, and as the source is moving avay from the person the sound is getting deeper because the wavelength is getting longer. So the correct answer is A. </span>
<u>Answer :</u>
(a) d = 0.25 m
(b) d = 0.5 m
<u>Explanation :</u>
It is given that,
Frequency of sound waves, f = 686 Hz
Speed of sound wave at
is, v = 343 m/s
(1) Perfectly destructive interference occurs when the path difference is half integral multiple of wavelength i.e.
........(1)
Velocity of sound wave is given by :




Hence, when the speakers are in phase the smallest distance between the speakers for which the interference of the sound waves is perfectly destructive is 0.25 m.
(2) For constructive interference, the path difference is integral multiple of wavelengths i.e.
( n = integers )
Let n = 1
So, 


Hence, the smallest distance between the speakers for which the interference of the sound waves is maximum constructive is 0.5 m.
Answer:
16.7 s
Explanation:
T= <u>Vf - Vo</u> a= <u>F</u>
a m
4,500 / 3000 = 1.5 (a)
30 - 5 / 1.5(a) = 16.7 s