Answer:
hope it helps you..,.....,..........
Answer:
a) eight and seven ninths minus three and four sixths
Step-by-step explanation:
The required result is 
a)

b)

c)

d)

16*1.059)=16.944
To the nearest tenth 16.9
We have been given that a geometric sequence's 1st term is equal to 1 and the common ratio is 6. We are asked to find the domain for n.
We know that a geometric sequence is in form
, where,
= nth term of sequence,
= 1st term of sequence,
r = Common ratio,
n = Number of terms in a sequence.
Upon substituting our given values in geometric sequence formula, we will get:

Our sequence is defined for all integers such that n is greater than or equal to 1.
Therefore, domain for n is all integers, where
.
Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.