(a) The stone moves by uniform accelerated motion, with constant acceleration

directed downwards, and its initial vertical position at time t=0 is 750 m. So, the vertical position (in meters) at any time t can be written as

(b) The time the stone takes to reach the ground is the time at which the vertical position of the stone becomes zero: y(t)=0. So, we can write

from which we find the time t after which the stone reaches the ground:

(c) The velocity of the stone at time t can be written as

because it is an accelerated motion with initial speed zero. Substituting t=12.37 s, we find the final velocity of the stone:

(d) if the stone has an initial velocity of

, then its law of motion would be

and we can find the time it needs to reach the ground by requiring again y(t)=0:

which has two solutions: one is negative so we neglect it, while the second one is t=11.78 s, so this is the time after which the stone reaches the ground.
The answer is D.
C and A are incomplete as they only treat specific types of energy, and B doesn't answer the question.
It hink that it is the 2nd one
Answer: concentration c = 25.2 g /(41.99 g/mol × 0.75 l)
Explanation: M(NaF) = 41.99 g/mol and amount of substance n = m/M.
Concentration c = n/V
The time taken to complete her run is 1.9 hr.
<u>Explanation:</u>
Speed is a scalar quantity and it is defined as the ratio of distance covered to the time taken to cover that distance. As distance is also a scalar quantity, so the directions given in the problem can be ignored. Thus, the distance covered by the jogger is the sum of kilometers given in problem.
Distance covered = 6+5+4 = 15 km
And the speed is given as 8 km/hr.
So the time taken will be ratio of distance to speed.

So the jogger will take 1.9 hr to complete her run.