<span>The answer is: ultraviolet
The energy (E) of a photon is directly proportional to its frequency f, by Planck's
formula: E = hf, where h is Planck's constant (6.625 * 10**-34 joule-second).
The frequency is inversely proportional to the wavelength w by: f = c/w, where
c is the speed of light, 3.0 * 10**8 meters per second.
Combine these formulas and we see that the energy is inversely proportional to
the wavelength by: E = hc/w
If the energy is inversely proportional to the wavelength, a photon with twice the
energy has half the wavelength of our 442-nm. photon in this example.
So its wavelength is 221 nm. which is in the ultraviolet range.</span>
The answer is C as there is more force on the left side ( excess of 5 N) which therefore pushed it to the right with a force of 5 N!
Answer:
1.08x10⁻⁷
Explanation:
F=(GM₁M₂)/r²
=((6.67x10⁻¹¹)(70)(52))/(1.5²)
=2.42788x10⁻⁷/2.25
=1.07905778x10⁻⁷
≈1.08x10⁻⁷
When the capacitor is connected to the voltage, a charge Q is stored on its plates. Calling
the capacitance of the capacitor in air, the charge Q, the capacitance
and the voltage (
) are related by
(1)
when the source is disconnected the charge Q remains on the capacitor.
When the space between the plates is filled with mica, the capacitance of the capacitor increases by a factor 5.4 (the permittivity of the mica compared to that of the air):

this is the new capacitance. Since the charge Q on the plates remains the same, by using eq. (1) we can find the new voltage across the capacitor:

And since
, substituting into the previous equation, we find:
