Answer:
the water form is when the water is too hot that's when the vapor starts to come out
Answer:
Mass of sodium metal is 130.87 gram
Explanation:
The complete reaction is
2 NaN3 --> 2 Na + 3 N2
We know that PV = nRT
n = 
On substituting the given values, we get
moles of N2
Sodium azide's molar mass
3.02 *(2/3) = 2.013 moles
Mass = 2.03 * 65.01 = 130.87 gram
A positive acceleration indicates that the object sped up. This means that if you compare the first speed to the second, the second speed should be higher.
A negative acceleration indicates that the object has slowed down. This means that if you compare the first speed to the second, the second speed should be lower.
If an acceleration is 0, it means that it neither slowed down nor sped up.
Now let us analyze your problem by listing down the speed and the time:
At noon: 4 mi/hr
12:30 : 6 mi/hr
2:30 : 2 mi/hr
From noon to 12:30, you will notice that there is an increase in speed. This means that Tommy had a positive acceleration. (Rules out D.)
From 12:30 to 2:30, there is a decrease in speed. This would indicate that Tommy had a negative acceleration. (Rules out C.)
No speed was the same, so acceleration was never 0. (Rules out A.)
From the assumptions above, we can now deduce that the answer is B.
The reaction involved in present case is:
Net Reaction: Ca + 1/2 O2 → CaO. ..................(1)
In terms of oxidation and reduction, the reaction can be shown at
Oxidation: Ca → Ca2+ + 2e- .................(2)
Reduction: 1/2O2 + 2e- → O2-...................(3)
From, reaction 1 it can be seen that 1 mol of Ca reacts with 1/2 mol of O2 to form 1 mol of CaO.
From, reaction 2 it can be seen that 1 mol of Ca, generates 2 mol of e-.
Thus, when 1/2 mol of Ca is used in reaction, it will lose 1 mol of electrons.