Answer:
1 oxygen 1 hydrogen hydrogen peroxide I think
Answer: I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Explanation:
An Oxidant is any substance that oxidizes, or receives electrons from, another; in so doing, it becomes reduced in oxidation number.
A Reductant thus exactly the opposite.
Note that the equation provided shows that Iodine (I2) received an electron to become NEGATIVELY CHARGED:
I2 --> 2I-.
The oxidation number reduced from 0 to -1.
In contrast, the oxidation number of 2S2O3(-2) increases from -4 to -2.
Thus, I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Answer: 7.025959200000001
Explanation:
Answer:
0.135 mole of H2.
Explanation:
We'll begin by calculating the number of mole in 3.24 g of Mg. This can be obtained as follow:
Mass of Mg = 3.24 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /Molar mass
Mole of Mg = 3.24/24
Mole of Mg = 0.135 mole
Next, we shall write the balanced equation for the reaction. This is illustrated below:
Mg + 2HCl —> MgCl2 + H2
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Finally, we shall determine the number of mole of H2 produced by reacting 3.24 g (i.e 0.135 mole) of Mg. This can be obtained as follow:
From the balanced equation above,
1 mole of Mg reacted to produce 1 mole of H2.
Therefore, 0.135 mole of Mg will also react to produce 0.135 mole of H2.
Thus, 0.135 mole of H2 can be obtained from the reaction.
Answer: No
Explanation: For it to be a divergent boundary, the arrows would have to be pointing in opposite directions. (one points left, one points right).