Answer:
2r
Explanation:
As we know that
The displacement is the total distance measured between the initial or start and final or destination point
If particle cover half path of the circle, the displacement can easily find out by considering the distance between the start and destination point
We attached the diagram for better understanding
As per the diagram.
The displacement after half-circle is
AB = OA + OB
= r + r
= 2r
The energy the electron gives up passing between the electrodes is equal to the product between its charge and the potential difference between the electrodes:

where
e is the electron charge

is the potential difference
Plugging numbers into the equation, we find that the electron gives up is
Answer:
See below
Explanation:
Vertical component of initial velocity = 200 sin 35° = 114.72 m/s
then use position formula a = 9.81 m/s^2
0 = 300 + 114.72 t - 1/2 (9.81)(t^2)
use quadratic formula with a = - 4.905 b = 114.72 c = 300
to find t = <u>25.76 seconds </u>
<u />
To find the range
( horizontal distance the projectile lands from launch point)
Horizontal component of initial velocity 200 cos 35 = 163.83 m/s
( it flies horizontally at this speed for <u>25.76 seconds <==found above</u>)
163.83 m/s * 25.76 s = <u>4220.3 meters</u>
Id say A because the geocentric model is where the earth is at the center of the universe and all other planets, suns, stars, and moons are revolving around it
Answer:
119.88 km/h
Explanation:
1500/45=33.3
use a m/s to km/h calculator
put in 33.3 for m/s and you will get 119.88 km/h.
119.88 km/h.