1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aksik [14]
2 years ago
10

Da 6.0 kg wooden crate slides across a wooden floor

Physics
1 answer:
IrinaK [193]2 years ago
4 0

Answer:coe?

Explanation:

You might be interested in
Calculate the force of gravity between a comet with a mass of 500kg and a small asteroid with a mass of 20kg that is separated b
givi [52]

▪▪▪▪▪▪▪▪▪▪▪▪▪  {\huge\mathfrak{Answer}}▪▪▪▪▪▪▪▪▪▪▪▪▪▪

The equivalent gravitational force is ~

  • F  \approx1.48\times 10 {}^{ - 7}  \: \: N

\large \boxed{ \mathfrak{Step\:\: By\:\:Step\:\:Explanation}}

We know that ~

\huge\boxed{\mathrm{F = \dfrac{ Gm_1m_2}{ r²}}}

where,

  • F = gravitational force

  • m_1 = mass of 1st object = 500 kg

  • m_2 = mass of 2nd object = 20kg

  • G = gravitational constant = 6.674 × {10}^ {-11}

  • r = distance between the objects = 2.12 m

Let's calculate the force ~

  • F = \dfrac{6.674   \times 10 {}^{ - 11} \times 500 \times 20}{(2.12) {}^{2} }

  • F = \dfrac{6.674  \times 10 {}^{ - 11} \times 10 {}^{4} }{4.4944}

  • F =  \dfrac{6.674}{4.4944}  \times 10 {}^{ - 7}

  • F =1.484 \times 10 {}^{ - 7}  \: \: newtons
7 0
2 years ago
What type of energy can take up space
Arada [10]

Answer:

Yes energy does take up space.

Explanation:

Every form of energy has a defining characteristic; sound is the vibration of molecules, electricity is the movement of electrons, and mass is the thing that take up space.

8 0
2 years ago
1.Sobre a queda-livre,assinale V para verdadeiro e F para falso
lisov135 [29]

Answer:pelo o que eu sei é ..

V

V

V

F

F

F

Explanation:

8 0
3 years ago
The half-life of Iodine-131 is 8.0252 days. If 14.2 grams of I-131 is released in Japan and takes 31.8 days to travel across the
MakcuM [25]

Answer:

Explanation:

Half-life problems are modeled as exponential equations.  The half-life formula is P=P_o\left (\dfrac{1}{2} \right)^{\frac{t}{k}} where P_o is the initial amount, k is the length of the half-life, t is the amount of time that has elapsed since the initial measurement was taken, and P is the amount that remains at time t.

P=14.2\left (\dfrac{1}{2} \right)^{\frac{t}{8.0252}}

<u>Deriving the half-life formula</u>

If one forgets the half-life formula, one can derive an equivalent equation by recalling the basic an exponential equation, y=a b^{t}, where t is still the amount of time, and y is the amount remaining at time t.  The constants a and b can be solved for as follows:

Knowing that amount initially is 14.2g, we let this be time zero:

y=a b^{t}

(14.2)=ab^{(0)}

14.2=a *1

14.2=a

So, a=14.2, which represents out initial amount of the substance, and our equation becomes: y=14.2 b^{t}

Knowing that the "half-life" is 8.0252 days (note that the unit here is "days", so times for all future uses of this equation must be in "days"), we know that the amount remaining after that time will be one-half of what we started with:

\left(\frac{1}{2} *14.2 \right)=14.2 b^{(8.0252)}

\dfrac{7.1}{14.2}=\dfrac{14.2 b^{8.0252}}{14.2}

0.5=b^{8.0252}

\sqrt[8.0252]{\frac{1}{2}}=\sqrt[8.0252]{b^{8.0252}}

\sqrt[8.0252]{\frac{1}{2}}=b

Recalling exponent properties, one could find that  \left ( \frac{1}{2} \right )^{\frac{1}{8.0252}}=b, which will give the equation identical to the half-life formula.  However, recalling this trivia about exponent properties is not necessary to solve this problem.  One can just evaluate the radical in a calculator:

b=0.9172535661...

Using this decimal approximation has advantages (don't have to remember the half-life formula & don't have to remember as many exponent properties), but one minor disadvantage (need to keep more decimal places to reduce rounding error).

So, our general equation derived from the basic exponential function is:

y=14.2* (0.9172535661)^t  or y=14.2*(0.5)^{\frac{t}{8.0252}} where y represents the amount remaining at time t.

<u>Solving for the amount remaining</u>

With the equation set up, substitute the amount of time it takes to cross the Pacific to solve for the amount remaining:

y=14.2* (0.9172535661)^{(31.8)}          y=14.2*(0.5)^{\frac{(31.8)}{8.0252}}

y=14.2* 0.0641450581                    y=14.2*(0.5)^{3.962518068}

y=0.9108598257                              y=14.2* 0.0641450581

                                                        y=0.9108598257

Since both the initial amount of Iodine, and the amount of time were given to 3 significant figures, the amount remaining after 31.8days is 0.911g.

8 0
1 year ago
The interstellar clouds called molecular clouds are _________.
ira [324]

Answer:

nebulas and they are the cool clouds in which stars form

Explanation:

The stars are born by chance. Fragments of matter are gathered from the cool clouds of gas and dust that float in space, the so-called nebulas. These particles are added by gravitational attraction to form a large mass.

This conglomerate, due to the effect of gravity, contracts on itself and as a consequence increases in its center, density, pressure and heat. In this way, atoms move faster and collide with each other. Under these conditions, nuclear fusion reactions soon begin. When they start the star is born.

3 0
3 years ago
Other questions:
  • A small cylinder is rolled along a ruler and completes two revolutions. The circumference is the distance around the outside of
    12·1 answer
  • A small submarine has a volume of 30 m3 and has a mass of 40,000 kg. It needs external tanks that can be filled with air for buo
    13·1 answer
  • Why is soft iron used for the core of an electromagnet?
    12·2 answers
  • What potential difference is required to cause 4.00 a to flow through a resistance of 330 ω?
    14·1 answer
  • The amount of power required to move an object can be increased without changing the
    10·1 answer
  • Anybody wanna help? (Picture Included?)
    15·1 answer
  • PLEASE HELP!!!!!!!!Move on to electric force. Blow up the two balloons and knot them. Then tie a thread onto each balloon. Suspe
    5·2 answers
  • A car accelerates from rest at 1.0 m/s2 for 20.0 second along a straight road. It then moves at a constant speed for half an hou
    15·1 answer
  • Define the refraction index of a
    13·1 answer
  • When does the air parcel stop losing energy?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!