Explanation:
The structure of Ferrarrisite Ca5(HAs O4)2(AsO4)2
Answer:
Rate = 0.001615 Ms-1
Explanation:
2 NO2 + F2 --> 2 NO2F
The reaction is first order with respect to NO2 and also first order with respect to F2.
The rate law is given as;
Rate = k [NO2] [ F2]
k = 1.58E-4 M-1s-1
[NO2] = 2.84 M
[F2] = 3.60 M
Rate = ?
Inserting the values into the equation, we have;
Rate = 1.58E-4 * 2.84 * 3.60
Rate = 0.001615 Ms-1
Answer: They digest excess or worn out organelles, food particles, and engulfed viruses or bacteria.
Explanation:
Answer: Two electron configurations of elements that would have similar chemical properties are (2) and (4).
Explanation:
(1) 
(2) 
(3) ![[Ar]4s^23d^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E23d%5E5)
(4) ![[Ar]4s^23d^{10}^4p^5](https://tex.z-dn.net/?f=%5BAr%5D4s%5E23d%5E%7B10%7D%5E4p%5E5)
Valence electrons : These are the electrons present in last principal quantum number of an atom of the element.
Two electron configurations represent elements that would have similar chemical properties are (2) and (4). This is because number of valence electrons present in both of them are same that is seven valence electrons . Also valence electrons of both the elements are present in p-orbital which means that they both belongs to same group in a periodic table. The members of same group in a periodic table have similar chemical properties.
Answer:
Answers are in the explanation
Explanation:
Ksp of CdF₂ is:
CdF₂(s) ⇄ Cd²⁺(aq) + 2F⁻(aq)
Ksp = 6.44x10⁻³ = [Cd²⁺] [F⁻]²
When an excess of solid is present, the solution is saturated, the molarity of Cd²⁺ is X and F⁻ 2X:
6.44x10⁻³ = [X] [2X]²
6.44x10⁻³ = 4X³
X = 0.1172M
<h3>[F⁻] = 0.2344M</h3><h3 />
Ksp of LiF is:
LiF(s) ⇄ Li⁺(aq) + F⁻(aq)
Ksp = 1.84x10⁻³ = [Li⁺] [F⁻]
When an excess of solid is present, the solution is saturated, the molarity of Li⁺ and F⁻ is XX:
1.84x10⁻³ = [X] [X]
1.84x10⁻³ = X²
X = 0.0429
<h3>[F⁻] = 0.0429M</h3><h3 /><h3>The solution of CdF₂ has the higher fluoride ion concentration</h3>