First, "boxes of two sizes" means we can assign variables: Let x = number of large boxes y = number of small boxes "There are 115 boxes in all" means x + y = 115 [eq1] Now, the pounds for each kind of box is: (pounds per box)*(number of boxes) So, pounds for large boxes + pounds for small boxes = 4125 pounds "the truck is carrying a total of 4125 pounds in boxes" (50)*(x) + (25)*(y) = 4125 [eq2] It is important to find two equations so we can solve for two variables. Solve for one of the variables in eq1 then replace (substitute) the expression for that variable in eq2. Let's solve for x: x = 115 - y [from eq1] 50(115-y) + 25y = 4125 [from eq2] 5750 - 50y + 25y = 4125 [distribute] 5750 - 25y = 4125 -25y = -1625 y = 65 [divide both sides by (-25)] There are 65 small boxes. Put that value into either equation (now, which is easier?) to solve for x: x = 115 - y x = 115 - 65 x = 50 There are 50 large boxes.
Answer: I believe it would be 1.25, because 1.42 times 55000 is 78100, and 1.25 times 64000 is 80000, and 80000 is greater than 78100.
(not completely sure though, I'm not the brightest)
Step-by-step explanation:
Pythagoras theorem: leg 1 squared + leg 2 squared = hypotenuse squared
In the diagram, the triangle has angles 90 and 45. So the other angle in the triangle must be 45 degrees as well. (180 - 90 -45 = 45)
This means it is an isosceles triangle (since two angles are the same), so the two legs have the same length.
So we can say that length of leg1 = x, and the length of leg2 also equals x
Now let's use pythagoras' theorem:
leg1 = x
leg2 = x
hypotenuse = 16
x^2 + x^2 = 16^2
2x^2 = 16^2
2x^2 = 256
x^2 = 128
x = √(128)
x = 8√2