Answer:
3.28 m
3.28 s
Explanation:
We can adopt a system of reference with an axis along the incline, the origin being at the position of the girl and the positive X axis going up slope.
Then we know that the ball is subject to a constant acceleration of 0.25*g (2.45 m/s^2) pointing down slope. Since the acceleration is constant we can use the equation for constant acceleration:
X(t) = X0 + V0 * t + 1/2 * a * t^2
X0 = 0
V0 = 4 m/s
a = -2.45 m/s^2 (because the acceleration is down slope)
Then:
X(t) = 4*t - 1.22*t^2
And the equation for speed is:
V(t) = V0 + a * t
V(t) = 4 - 2.45 * t
If we equate this to zero we can find the moment where it stops and begins rolling down, that will be the highest point:
0 = 4 - 2.45 * t
4 = 2.45 * t
t = 1.63 s
Replacing that time on the position equation:
X(1.63) = 4 * 1.63 - 1.22 * 1.63^2 = 3.28 m
To find the time it will take to return we equate the position equation to zero:
0 = 4 * t - 1.22 * t^2
Since this is a quadratic equation it will have to answers, one will be the moment the ball was released (t = 0), the other will eb the moment when it returns:
0 = t * (4 - 1.22*t)
t1 = 0
0 = 4 - 1.22*t2
1.22 * t2 = 4
t2 = 3.28 s
Answer:
1. Molecular cloud
2. Close binary
3. Brown dwarf
4. Protostellar wind
5. Thermal pressure
6. Protostellar disk
7. Jet
8. Degeneracy pressure
Explanation:
1. The Sun formed, probably along with other stars, within a large molecular cloud.
2. A Close binary consists of two stars that orbit each other every few days.
3. A Brown dwarf is a "star" so small in mass that its core never gets hot enough to sustain nuclear fusion reactions.
4. Most of the gas remaining from the process of star formation is swept into interstellar space by a protostellar wind.
5. As a protostar's internal temperature increases, its growing thermal pressure helps slow its contraction due to gravity.
6. Planets may form within the protostellar disk that surrounds a forming star.
7. Mass can be lost through a jet of material ejected along a protostar's axis of rotation.
8. A "star" with mass below 0.08 solar mass has its gravitational contraction halted by degeneracy pressure.
The friction between the two objects creates heat.
Molecules in the air scatter blue<span> light from the sun more than they scatter red light.</span>
Efficiency = 1000/2000 = 0.5 = 50%