1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
5

Does anyone know how to do this question??? Force = 7kN Pressure = 1mPa Area = ?

Physics
1 answer:
Andreas93 [3]3 years ago
5 0

Answer:

7000 m^2

Explanation:

Pressure=Force/Area

1=7000/Area

1(Area)=7000

Area=7000 m^2

You might be interested in
Three equal charge 1.8*10^-8 each are located at the corner of an equilateral triangle ABC side 10cm.calculate the electric pote
Arlecino [84]

Answer:

If all these three charges are positive with a magnitude of 1.8 \times 10^{-8}\; \rm C each, the electric potential at the midpoint of segment \rm AB would be approximately 8.3 \times 10^{3}\; \rm V.

Explanation:

Convert the unit of the length of each side of this triangle to meters: 10\; \rm cm = 0.10\; \rm m.

Distance between the midpoint of \rm AB and each of the three charges:

  • d({\rm A}) = 0.050\; \rm m.
  • d({\rm B}) = 0.050\; \rm m.
  • d({\rm C}) = \sqrt{3} \times (0.050\; \rm m).

Let k denote Coulomb's constant (k \approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2}.)

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm A})}.

Electric potential due to the charge at \rm B: \displaystyle \frac{k\, q}{d({\rm B})}.

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm C})}.

While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.

Hence, the electric field at the midpoint of \rm AB due to all these three charges  would be:

\begin{aligned}& \frac{k\, q}{d({\rm A})} + \frac{k\, q}{d({\rm B})} + \frac{k\, q}{d({\rm C})} \\ &= k\, \left(\frac{q}{d({\rm A})} + \frac{q}{d({\rm B})} + \frac{q}{d({\rm C})}\right) \\ &\approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2} \\ & \quad \quad \times \left(\frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{\sqrt{3} \times (0.050\; \rm m)}\right) \\ &\approx 8.3 \times 10^{3}\; \rm V\end{aligned}.

4 0
3 years ago
Why polarization does not occur in dry cell?​
Arisa [49]

Answer:

Manganese oxide prevents polarisation in dry cells. - Polarization is a defect that occurs in simple electric cells due to the accumulation of hydrogen gas around the positive electrode. ... - MnO2 reacts with H2 and forms water as byproduct, so depolarization doesn't occur.

7 0
3 years ago
According to newton's first law, what is required to make an object slow down?
Luden [163]
I believe it is friction

3 0
3 years ago
Read 2 more answers
A spring with force constant of 59 N/m is compressed by 1.3 cm in a hockey game machine. The compressed spring is used to accele
Furkat [3]

Answer:

The puck moves a vertical height of 2.6 cm before stopping

Explanation:

As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.

So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.

Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So

1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².

Substituting the kinetic energy of the puck for the potential energy of the spring, we have

1/2kx² = mgh

h = kx²/2mg

= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)

= 0.009971 Nm/0.38416 N

= 0.0259 m

= 2.59 cm

≅ 2.6 cm

So the puck moves a vertical height of 2.6 cm before stopping

3 0
3 years ago
Let v1, , vk be vectors, and suppose that a point mass of m1, , mk is located at the tip of each vector. The center of mass for
g100num [7]

Answer:

Explanation:

Center of mass is give as

Xcm = (Σmi•xi) / M

Where i= 1,2,3,4.....

M = m1+m2+m3 +....

x is the position of the mass (x, y)

Now,

Given that,

u1 = (−1, 0, 2) (mass 3 kg),

m1 = 3kg and it position x1 = (-1,0,2)

u2 = (2, 1, −3) (mass 1 kg),

m2 = 1kg and it position x2 = (2,1,-3)

u3 = (0, 4, 3) (mass 2 kg),

m3 = 2kg and it position x3 = (0,4,3)

u4 = (5, 2, 0) (mass 5 kg)

m4 = 5kg and it position x4 = (5,2,0)

Now, applying center of mass formula

Xcm = (Σmi•xi) / M

Xcm = (m1•x1+m2•x2+m3•x3+m4•x4) / (m1+m2+m3+m4)

Xcm = [3(-1, 0, 2) +1(2, 1, -3)+2(0, 4, 3)+ 5(5, 2, 0)]/(3 + 1 + 2 + 5)

Xcm = [(-3, 0, 6)+(2, 1, -3)+(0, 8, 6)+(25, 10, 0)] / 11

Xcm = (-3+2+0+25, 0+1+8+10, 6-3+6+0) / 11

Xcm = (24, 19, 9) / 11

Xcm = (2.2, 1.7, 0.8) m

This is the required center of mass

6 0
3 years ago
Other questions:
  • A sled is on an icy (frictionless) slope that is 30° above the horizontal. When a 40-N force, parallel to the incline and direct
    10·1 answer
  • Technician A says that the paper test could detect a burned valve. Technician B says that a grayish white stain could be a coola
    10·1 answer
  • Which of the following is not an example of accelerated motion
    9·2 answers
  • Help Please!!
    7·1 answer
  • This problem has been solved! See the answer A 6.0 kg object, initially at rest in free space, "explodes" into three segments of
    14·1 answer
  • A 2kg watermelon is dropped from a 4m tall roof a) use the appropriate kinematic equations to determine the instantaneous veloci
    10·1 answer
  • a 4,000 kilogram rocket has accelerates at a rate of 35 m/s2. How much force is required to do this?​
    11·1 answer
  • What is kinematics ???<br>need a legendary answer -,-" <br>xD ​
    13·2 answers
  • What happens to the size of an Object when it is heated ?​
    8·2 answers
  • A graph titled velocity versus time has horizontal axis time (seconds) and vertical axis velocity (meters per second). A line ru
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!