Answer:
vB = 15.4 m/s
Explanation:
Principle of conservation of energy:
Because there is no friction the mechanical energy is conserve
ΔE = 0
ΔE : mechanical energy change (J)
K : Kinetic energy (J)
U: Potential energy (J)
K = (1/2)mv²
U = m*g*h
Where :
m: mass (kg)
v : speed (m/s)
h : hight (m)
Ef - Ei = 0
(K+U)final - (K+U)initial =0
(K+U)final = (K+U)initial
((1/2)mv²+m*g*h)final = ((1/2)mv²+m*g*h)initial , We divided by m both sides of the equation:
((1/2)vB² + g*hB = (1/2 )vA²+ g*hA
(1/2) (vB)² + (9.8)*(14.7) = 0 + (9.8)(26.8 )
(1/2) (vB)² = (9.8)(26.8 ) - (9.8)*(14.7)
(vB)² = (2)(9.8)(26.8 - 14.7)
(vB)² = 237.16

vB = 15.4 m/s : speed of the cart at B
Did you try looking it up ?
Answer:
look at my Explanation
Explanation:
If the Maggie's mass is 100.0 kg and the truck is 1810 kg, calculate the magnitude of the net (unbalanced) force that can cause the acceleration.
Answer: The area of the parking lot is 14,400 meters squared.
Explanation:
We have the dimensions of the parking lot.
60m by 240m
The units used here are meters.
Now, if we want to know the area of the parking lot is equal to the product between the length and the width:
A = 60m*240m = 14,400 m^2
The area of the parking lot is 14,400 meters squared.
Answer: I think it would be 72 because 12x3=36 and then all the chick have 2 feet each so you would multiply t but 2 and that would be 72
Explanation: