Answer:
111,000 Pa
Explanation:
P = Patm + ρgh
122,000 Pa = Patm + (921 kg/m³) (9.8 m/s²) (1.22 m)
Patm = 111,000 Pa
Answer:
They experience the same magnitude impulse
Explanation:
We have a ping-pong ball colliding with a stationary bowling ball. According to the law of conservation of momentum, we have that the total momentum before and after the collision must be conserved:
where is the initial momentum of the ping-poll ball
is the initial momentum of the bowling ball (which is zero, since the ball is stationary)
is the final momentum of the ping-poll ball
is the final momentum of the bowling ball
We can re-arrange the equation as follows or
which means (1) so the magnitude of the change in momentum of the ping-pong ball is equal to the magnitude of the change in momentum of the bowling ball.
However, we also know that the magnitude of the impulse on an object is equal to the change of momentum of the object:
(2) therefore, (1)+(2) tells us that the ping-pong ball and the bowling ball experiences the same magnitude impulse:
Volcanism is associated with two of the plate boundary types: divergent and convergent margins. ... Volcanism can also occur at intraplate volcanoes. These volcanoes are believed to have sources deeper down in the Earth's mantle that remain in a relatively fixed location relative to the always migrating plate boundaries.