Answer:
Capacitive Reactance is 4 times of resistance
Solution:
As per the question:
R = 
where
R = resistance

f = fixed frequency
Now,
For a parallel plate capacitor, capacitance, C:

where
x = separation between the parallel plates
Thus
C ∝ 
Now, if the distance reduces to one-third:
Capacitance becomes 3 times of the initial capacitace, i.e., x' = 3x, then C' = 3C and hence Current, I becomes 3I.
Also,

Also,
Z ∝ I
Therefore,




Solving the above eqn:

Answer:
a = 7.5 m / s²
Explanation:
For this exercise let's use Newton's second law, let's create a coordinate system with the x axis parallel to the plane and the y axis perpendicular to the plane
Y axis
N - W cos θ = 0
N = mg cos θ
X axis
W sin θ = m a
mg sin θ = m a
a = g sin θ
let's calculate
a = 9.8 cos 40
a = 7.5 m / s²
Answer:
8400m
Explanation:
The engine that falls off would have the same constant horizontal velocity as the airplane's when if falls off if we ignore air resistance. So it would have a horizontal velocity of 280m/s for 30seconds before it hits the ground.
Therefor the horizontal distance the engine travels during its fall is
280 * 30 = 8400m
Answer:
Chemical composition, Temperature, Radial velocity, Size or diameter of the star, Rotation.
Explanation:
Elemental abundances are determined by analyzing the relative strengths of the absorption lines in the spectrum of a star.
The Spectral class to which the star belongs gives the information related to the temperature of the star. It is the spectral lines that determine the spectral class O B A F G K M are the spectral classes.
By measuring the wavelengths of the lines in the star's spectrum gives the radial velocity. Doppler shift is the method used to find the radial velocity.
A star can be classified as a giant or a dwarf . A giant star will have narrow width spectral lines whereas a dwarf star has wider spectral lines.
Broadening of the spectral lines will determine the star's rotation.
The car travels at a speed of 25m/s.
<u>Explanation:</u>
Given-
Mass, m = 1500kg
Coefficient of friction, μk = 0.47
Distance, x = 68m
Speed, s = ?
We know,

and
F = μ X m X g
Therefore,
μ * m * g = m * a
μ * g = a
Let, g = 9.8m/s²
So,


We know,

where, v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
If the car comes to rest, the final velocity, v becomes 0.
So,

The car travels at a speed of 25m/s.