Answer:
The force of the ball on the bat is same as the force of the bat on the ball.
Explanation:
A bat hits the ball and the ball moves to the out filed.
According to the Newton's third law, for every action there is an equal and opposite reaction.
The action and the reaction forces acts on the two different bodies but the magnitude of the force is same.
As the ball is hitted by the bat, the bat exerts the force on the ball and the same force is exerted on the bat by the ball according to the Newton's third law.
So, the force of the ball on the bat is same as the force of the bat on the ball but the direction of force is opposite.
Since the temperature of the gas remains constant in the process, we can use Boyle's law, which states that for a gas transformation at constant temperature, the product between the gas pressure and its volume is constant:

which can also be rewritten as

(1)
where the labels 1 and 2 mark the initial and final conditions of the gas.
In our problem,

,

and

, so the final pressure of the gas can be found by re-arranging eq.(1):

Therefore the correct answer is
<span>1. 0.75 atm</span>
Answer:
Scientists have identified about a dozen major and several minor tectonic plates
Answer: D
Explanation: I have my answers VS. Go0gle answers (go0gle answers are pics)
(A) Both have the same day length. Well, Venus doesn't havve the same amount of days. (I already know off the top of my head, but I still searched it up)
(B) Both rotate in the same direction. In school (before Virus) they would always show diagrams of the planets on the projector and Venus doesn't rotate
(C) Both have ample water. No. Venus doesn't have much water >_>
(D) Both have a solid inner core and a liquid outer core. Yesh. In my lessons (before), Venus has a solid inner core and liquid outer core.