Answer:
2m₁m₃g / (m₁ + m₂ + m₃)
Explanation:
I assume the figure is the one included in my answer.
Draw a free body diagram for each mass.
m₁ has a force T₁ up and m₁g down.
m₂ has a force T₁ up, T₂ down, and m₂g down.
m₃ has a force T₂ up and m₃g down.
Assume that m₁ accelerates up and m₂ and m₃ accelerate down.
Sum of the forces on m₁:
∑F = ma
T₁ − m₁g = m₁a
T₁ = m₁g + m₁a
Sum of the forces on m₂:
∑F = ma
T₁ − T₂ − m₂g = m₂(-a)
T₁ − T₂ − m₂g = -m₂a
(m₁g + m₁a) − T₂ − m₂g = -m₂a
m₁g + m₁a + m₂a − m₂g = T₂
(m₁ − m₂)g + (m₁ + m₂)a = T₂
Sum of the forces on m₃:
∑F = ma
T₂ − m₃g = m₃(-a)
T₂ − m₃g = -m₃a
a = g − (T₂ / m₃)
Substitute:
(m₁ − m₂)g + (m₁ + m₂) (g − (T₂ / m₃)) = T₂
(m₁ − m₂)g + (m₁ + m₂)g − ((m₁ + m₂) / m₃) T₂ = T₂
(m₁ − m₂)g + (m₁ + m₂)g = ((m₁ + m₂ + m₃) / m₃) T₂
m₁g − m₂g + m₁g + m₂g = ((m₁ + m₂ + m₃) / m₃) T₂
2m₁g = ((m₁ + m₂ + m₃) / m₃) T₂
T₂ = 2m₁m₃g / (m₁ + m₂ + m₃)
The image distance when a boy holds a toy soldier in front of a concave mirror, with a focal length of 0.45 m. is -0.56 m.
<h3>What is image distance?</h3>
This is the distance between the image formed and the focus when an object is placed in front of a plane mirror.
To calculate the image distance, we use the formula below.
Formula:
- 1/f = 1/u+1/v........... Equation 1
Where:
- f = Focal length of the mirror
- v = Image distance
- u = object distance
From the question,
Given:
Substitute these values into equation 1 and solve for the image distance
- 1/0.45 = 1/0.25 + 1/v
- 2.22 = 4+1/v
- 1/v = 2.22-4
- 1/v = -1.78
- v = 1/(-1.78)
- v = -0.56 m
Hence, The image distance is -0.56 m.
Learn more about image distance here: brainly.com/question/17273444
Answer:
9.98 × 10⁻⁹ C
Explanation:
mass, m = 1.00 × 10⁻¹¹ kg
Velocity, v = 23.0 m/s
Length of plates D₀ = 1.80 cm = 0.018 m
Magnitude of electric field, E = 8.20 × 10⁴ N/C
drop is to be deflected a distance d = 0.290 mm = 0.290 × 10⁻³ m
density of the ink drop = 1000 kg/m^3
Now,
Time =
or
Time =
or
Time = 6.9 × 10⁻⁴ s
Now, force due to the electric field, F = q × E
where, q is the charge
Also, Force = Mass × acceleration
q × E = 1.00 × 10⁻¹¹ × a
or
a =
Now from the Newton's equation of motion
where,
d is the distance
u is the initial speed
a is the acceleration
t is the time
or
or
q = 9.98 × 10⁻⁹ C
Answer: 100 suns
Explanation:
We can solve this with the following relation:
Where:
is the diameter of a dime
is the diameter of the Sun
is the distance between the Sun and the pinhole
is the amount of dimes that fit in a distance between the sunball and the pinhole
Finding :
This is roughly the diameter of the Sun
Now, the distance between the Earth and the Sun is one astronomical unit (1 AU), which is equal to:
So, we have to divide this distance between in order to find how many suns could it fit in this distance:
"Copernicus"was the one person among the following choices given in the question that <span>challenged the geocentric model of the solar system. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has come to your desired help.</span>