Answer:
Hi do we translate a this
Explanation:
Answer:eeded to change the temperature of one gram of a substance one degree ... iron(specific heat=0.12 cal/g C) and a cup of water both have the same temperature. ... If you drop a hot rock into a pail of water,the temperature of the rock and the water ... Therefore, water molecules have higher specific heat capacity than metals
Explanation:
Markovnikov rule, in organic chemistry, a generalization, formulated by Vladimir Vasilyevich Markovnikov in 1869, stating that in addition reactions to unsymmetrical alkenes, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component ...
<h3>
1.</h3>
C) The volume of the gas is proportional to the number of moles of gas particles.
The Avogadro's law applies to ideal gases with constant pressure and temperature. By that law, the volume of an ideal gas is proportional to the number of moles of particles in that gas.
<h3>2.</h3>
B) The gas now occupies less volume, and the piston will move downward.
Boyle's Law applies to ideal gases with a constant temperature. The volume of an ideal gas is inversely related to its pressure. A high pressure drives gas particles together, such that they occupy less volume. The gas trapped inside the piston has a smaller volume. As a result, the the piston will move downward.
Alternatively, consider the forces acting on the piston. Both the atmosphere and gravity are dragging the piston down. In order for it to stay in place, the gas below it must exert a pressure to balance the two forces. Now the pressure from outside has increased. The gas inside needs to increase its pressure. It needs a smaller volume to create that extra pressure. As a result, its volume will decrease, and the piston will move downwards.
Answer:
C
Explanation:
Electromagnetic waves travel at the speed of light and do not require molecules (gas, solid or liquid) to vibrate and travel.
Soundwaves when singing or from thunder vibrate particles to reach our ears and are known as mechanical waves.