Answer:
8 mm
Explanation:
Given:
Diameter, D = 800 mm
Pressure, P = 2 N/mm²
Permissible tensile stress, σ = 100 N/mm²
Now,
for the pipes, we have the relation as:
where, t is the thickness
on substituting the respective values, we get
or
t = 8 mm
Hence, the minimum thickness of pipe is 8 mm
The correct answer to this open question is the following.
The text structure of an article that discusses pharaohs and gives examples and explains how they look is a description.
The text structure called description allows the reader to fully know the characteristics of the people it is referring to, including some important details. That is why the author of a description text adds words like "such as" and "for example."
When describing something, the write is giving structure to the text and sequence. What comes first., what is followed, and so on.
That is why The text structure of an article that discusses pharaohs and gives examples and explains how they look is a description. It includes cause and effect sentences, and some comparisons in order to contrast an idea.
Answer:
The compressive stress of aplying a force of 708 kN in a 81 mm diamter cylindrical component is 0.137 kN/mm^2 or 137465051 Pa (= 137.5 MPa)
Explanation:
The compressive stress in a cylindrical component can be calculated aby dividing the compressive force F to the cross sectional area A:
fc= F/A
If the stress is wanted in Pascals (Pa), F and A must be in Newtons and square meters respectively.
For acylindrical component the cross sectional area A is:
A=πR^
If the diameter of the component is 81 mm, the radius is the half:
R=81mm /2 = 40.5 mm
Then A result:
A= 3.14 * (40.5 mm)^2 = 5150.4 mm^2
In square meters:
A= 3.14 * (0.0405 m)^2 = 0.005150 m^2
Replacing 708 kN to the force:
fc= 708 kN / 5150.4 mm^2 = 0.137 kN/mm^2
Using the force in Newtons:
F= 70800 N
Finally the compressive stress in Pa is:
fc= 708000 / 0.005150 m^2 = 137465051 Pa = 137 MPa
Answer:
I think its b if you get it right tell me or no