1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goldfiish [28.3K]
3 years ago
12

Determine the required dimensions of a column with a square cross section to carry an axial compressive load of 6500 lb if its l

ength is 64 in and its ends are fixed. Use a design factor of 3.0. Use aluminum 6061-T6.
Engineering
2 answers:
Hoochie [10]3 years ago
5 0

Answer:

The dimensions are 0.95 in

Explanation:

Given:

l = length = 64 in

lc/2 = 64/2 = 32 in

FOS = factor of safety = 3

E = 10.6x10⁶ psi

σ = 40000 psi

The square section is

I = a⁴/12

P=\frac{\pi^{2}*E*I  }{lc^{2} }\\6500=\frac{\pi ^{2}*10.6x10^{6}*a^{4}   }{12*32^{2} } \\a=0.95in

σallowable = σ/3 = 40000/3 = 13333.3 psi

Area = a² = 0.95² = 0.902 in²

σactual = 6500/0.902 = 7206.2 psi

like σactual < σallowable, the dimensions are 0.95 in

ycow [4]3 years ago
3 0

Answer: 0.95 inches

Explanation:

A direct load on a column is considered or referred to as an axial compressive load. A direct concentric load is considered axial. If the load is off center it is termed eccentric and is no longer axially applied.

The length= 64 inches

Ends are fixed Le= 64/2 = 32 inches

Factor Of Safety (FOS) = 3. 0

E= 10.6× 10^6 ps

σy= 4000ps

The square cross-section= ia^4/12

PE= π^2EI/Le^2

6500= 3.142^2 × 10^6 × a^4/12×32^2

a^4= 0.81 => a=0.81 inches => a=0.95 inches

Given σy= 4000ps

σallowable= σy/3= 40000/3= 13333. 33psi

Load acting= 6500

Area= a^2= 0.95 ×0.95= 0.9025

σactual=6500/0.9025

σ actual < σallowable

The dimension a= 0.95 inches

You might be interested in
What is the angular velocity (in rad/s) of a body rotating at N r.p.m.?
Darina [25.2K]

Answer:

0.1047N

Explanation:

To solve this problem we must remember the conversion factors, remembering that 1 revolution equals 2π radians and 1min equals 60s

N\frac{rev}{min} \frac{2\pi }{1rev} \frac{1min}{60} =N\frac{2\pi }{60} =0.1047N

in conclusion, to know how many rad / s an element rotates which is expressed in Rev / min we must only multiply by 0.1047

3 0
3 years ago
Engineers need to be open-ended when dealing with their designs. Why?
melomori [17]
I think the answer would be A if its wrong I’m sorry
7 0
3 years ago
What is definition of<br>computational fluid Dynamics <br>unstructured grid <br>domain<br>geometry​
Keith_Richards [23]
Najsjjsjhshehdhdhdhdhhdhdhdhdhhd
6 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
Other questions:
  • A 1-lb collar is attached to a spring and slides without friction along a circular rod in a vertical plane. The spring has an un
    6·1 answer
  • A stream of ethylene gas at 250°C and 3800 kPa expands isentropically in a turbine to 120 kPa. Determine the temperature of the
    5·1 answer
  • A steam reformer operating at 650C and 1 atm uses propane as fuel for hydrogen production. At the given operating conditions, th
    12·1 answer
  • a) Give a brief description of the type of DC motor that operates with its field windings running in Series with the armature an
    10·1 answer
  • Block A is released from rest and slides down the frictionless ramp to the loop. The maximum height h of the loop is the same as
    6·1 answer
  • You are given a partial implementation of one header file, GildedRose.hpp. Item is a class that holds the information for each i
    6·1 answer
  • can someone please define these three vocabulary words for my stem class i will give brainliest if i can figure out how
    15·1 answer
  • What is the first step of the engineering design process?
    9·2 answers
  • What were some of the challenges to safety resulting from such radical airframe designs as highly swept wings, high wing loading
    15·1 answer
  • Lets Try This: study the pictures. Describe what you see and think about it. write your answer on a sheet of paper. home room
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!