Answer 1) The electric field at distance r from the thread is radial and has magnitude
E = λ / (2 π ε° r)
The electric field from the point charge usually is observed to follow coulomb's law:
E = Q / (4 π ε°
)
Now, adding the two field vectors:
= {2.5 / (22 π ε° X 0.07 ) ; 0}
Answer 2)
= {2.3 / (4 2 π ε°) ( - 7/ (√(84); -12 / (√84))
Adding these two vectors will give the length which is magnitude of the combined field.
The y-component / x-component gives the tangent of the angle with the positive x-axes.
Please refer the graph and the attachment for better understanding.
Answer:
1.95m/s
Explanation:
Please view the attached file for the detailed solution.
The following were the conversion factors used in order to express all quatities in SI units:

The relative density of gold is 19.3 it means the ratio obtained by dividing the density of gold by water at temp of 4 degree celcius is 19.3
<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
Answer:
magnet 4
because opposite direction i.e north and south will attract each other