Answer - 12,900 Newtons
Explanation
First, we find the volume of the water
Volume = Area * Heinght
= 1.5 m² x 7 m
= 10.5 m³
Covert the volume to liters
1 m³ of water = 1000 liters
10.5 m³ of water = 10.5 m³ * 1000 liters liter/m³
= 10,500 liters
Use the volume of water to calculate the mass
1 liter of water weighs 1 kg
10,500 liters of water = 10,500 * 1 kg/liter
= 10,500 kg
Now, we can calculate the force of gravity on the water
Force of gravity on the water = Weight of the water
Weight = Mass * Acceleration
Mass = 10,500kg
Acceleration (due to gravity) = 9.8 m/s²
Force of gravity on the water
= Weight of the water
= Mass * Acceleration
= 10,500 kg * 9.8 m/s²
= 102,900 Newtons
Answer:
a)
b)
Explanation:
From the question we are told that:
Distance between wires 
Wire 1 current 
Wire 2 current
a)
Generally the equation for Force on
due to
is mathematically given by

Where
B_2=Magnetic field current by 

Therefore




b)
Generally the equation for Force on
due to
is mathematically given by

Where
B_1=Magnetic field current by 

Therefore


<h3>
Answer: 7.74 newtons</h3>
========================================
Steps Shown:
Work = Force*Displacement
Power = Work/Time
Power = (Force*Displacement)/Time
900 W = (F*1000 m)/(8.6 sec)
900 = (F*1000)/8.6
900*8.6 = 1000F
7740 = 1000F
1000F = 7740
F = 7740/1000
F = 7.74 newtons
Answer:
350N
Explanation:
Given parameters:
Mass of the man = 125kg
Mass of the watermelon = 6kg
Mass of cantaloupe = 3kg
Mass of potatoes = 6kg
Acceleration = 2.5m/s²
Unknown:
Force required to get home = ?
Solution:
To find this force we use;
Force = mass x acceleration
mass = 125 + 6 + 3 + 6 = 140kg
So;
Net force = 140 x 2.5 = 350N
Answer:
The correct option is;
The graduate cylinder with more water has more thermal energy because it is holding more water molecules
Explanation:
Given that the thermal energy of the system is the energy possessed by the system by virtue of the increased motion of the particles by virtue of a transfer of heat, when the content of the system is heated
The thermal energy, Q is given by the following equation;
Q = Mass, m × The specific heat capacity, C × The change in temperature, ΔT
Given that the graduated cylinder with more water has more mass and therefore, more water molecules, than the cylinder with less water, the cylinder with more water has more thermal energy.